On~the asymptotics of the ratio of orthogonal polynomials.~II
Sbornik. Mathematics, Tome 46 (1983) no. 1, pp. 105-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu$ be a positive measure on the circumference $\Gamma=\{z:|z|=1\}$ and let $\mu'=\dfrac{d\mu}{d\theta}>0$ almost everywhere on $\Gamma$. Let $\Phi_n(z)=z^n+\cdots$ be the orthogonal polynomials corresponding to $\mu$, and let $a_n=-\overline{\Phi_{n+1}(0)}$ be their parameters. Then $\lim\limits_{n\to\infty}a_n=0$. Bibliography: 5 titles.
@article{SM_1983_46_1_a4,
     author = {E. A. Rakhmanov},
     title = {On~the asymptotics of the ratio of orthogonal {polynomials.~II}},
     journal = {Sbornik. Mathematics},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_46_1_a4/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - On~the asymptotics of the ratio of orthogonal polynomials.~II
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 105
EP  - 117
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_46_1_a4/
LA  - en
ID  - SM_1983_46_1_a4
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T On~the asymptotics of the ratio of orthogonal polynomials.~II
%J Sbornik. Mathematics
%D 1983
%P 105-117
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_46_1_a4/
%G en
%F SM_1983_46_1_a4
E. A. Rakhmanov. On~the asymptotics of the ratio of orthogonal polynomials.~II. Sbornik. Mathematics, Tome 46 (1983) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/SM_1983_46_1_a4/