On $\Sigma$ – realizations of metrics of positive curvature
Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 515-525
Cet article a éte moissonné depuis la source Math-Net.Ru
A metric $ds^2$ admits a $\Sigma$-realization if there is a realization of it in $E^3$ in the form of a surface whose boundary lies on a given surface $\Sigma$. This paper proves the existence of $\Sigma$-realizations of a certain class of metrics of positive curvature for surfaces of quite general form, and describes a number of possible $\Sigma$-realizations of the given metric. The proof is based on a consideration of a nonlinear boundary-value problem for immersion equations. Bibliography: 3 titles.
@article{SM_1983_45_4_a7,
author = {V. T. Fomenko},
title = {On~$\Sigma$~{\textendash} realizations of metrics of positive curvature},
journal = {Sbornik. Mathematics},
pages = {515--525},
year = {1983},
volume = {45},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_45_4_a7/}
}
V. T. Fomenko. On $\Sigma$ – realizations of metrics of positive curvature. Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 515-525. http://geodesic.mathdoc.fr/item/SM_1983_45_4_a7/
[1] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Fizmatgiz, M., 1969 | MR
[2] Sabitov I. X., “Ob odnoi skheme posledovatelnykh priblizhenii dlya pogruzhenii dvumernykh metrik v $E^3$”, Sib. matem. zh., XIX:6 (1978), 1358–1380 | MR
[3] Fomenko V. T., “Nepreryvnye izgibaniya vypuklykh poverkhnostei s kraevymi usloviyami”, Matem. sb., 110 (152) (1979), 493–504 | MR | Zbl