On~$\Sigma$~-- realizations of metrics of positive curvature
Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 515-525

Voir la notice de l'article provenant de la source Math-Net.Ru

A metric $ds^2$ admits a $\Sigma$-realization if there is a realization of it in $E^3$ in the form of a surface whose boundary lies on a given surface $\Sigma$. This paper proves the existence of $\Sigma$-realizations of a certain class of metrics of positive curvature for surfaces of quite general form, and describes a number of possible $\Sigma$-realizations of the given metric. The proof is based on a consideration of a nonlinear boundary-value problem for immersion equations. Bibliography: 3 titles.
@article{SM_1983_45_4_a7,
     author = {V. T. Fomenko},
     title = {On~$\Sigma$~-- realizations of metrics of positive curvature},
     journal = {Sbornik. Mathematics},
     pages = {515--525},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_4_a7/}
}
TY  - JOUR
AU  - V. T. Fomenko
TI  - On~$\Sigma$~-- realizations of metrics of positive curvature
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 515
EP  - 525
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_4_a7/
LA  - en
ID  - SM_1983_45_4_a7
ER  - 
%0 Journal Article
%A V. T. Fomenko
%T On~$\Sigma$~-- realizations of metrics of positive curvature
%J Sbornik. Mathematics
%D 1983
%P 515-525
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_4_a7/
%G en
%F SM_1983_45_4_a7
V. T. Fomenko. On~$\Sigma$~-- realizations of metrics of positive curvature. Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 515-525. http://geodesic.mathdoc.fr/item/SM_1983_45_4_a7/