On the connection between the properties of completeness and unconditional convergence for orthogonal systems
Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 507-513
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists an orthonormal system that is not a system of unconditional convergence and, moreover, is not complete in the $L_2$-metric on any set of positive measure.
Bibliography: 8 titles.
@article{SM_1983_45_4_a6,
author = {A. A. Talalyan},
title = {On the connection between the properties of completeness and unconditional convergence for orthogonal systems},
journal = {Sbornik. Mathematics},
pages = {507--513},
publisher = {mathdoc},
volume = {45},
number = {4},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_45_4_a6/}
}
TY - JOUR AU - A. A. Talalyan TI - On the connection between the properties of completeness and unconditional convergence for orthogonal systems JO - Sbornik. Mathematics PY - 1983 SP - 507 EP - 513 VL - 45 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_45_4_a6/ LA - en ID - SM_1983_45_4_a6 ER -
A. A. Talalyan. On the connection between the properties of completeness and unconditional convergence for orthogonal systems. Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 507-513. http://geodesic.mathdoc.fr/item/SM_1983_45_4_a6/