Quasiclassical asymptotics of the scattering amplitude for the scattering of a~plane wave by inhomogeneities of the medium
Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 487-506
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $[\Delta+k^2q(x)]\psi(x,k)=0$, where $x\in\mathbf R^n$, $q(x)\in C^\infty$, $q(x)>0$, $q(x)\equiv1$ for $r=|x|>a$, and $\psi(x,k)=e^{ikx_n}+u(x,k)$, in which the function $u$ satisfies the radiation conditions
$$
u(x,k)=f(\omega,k)r^{(1-n)/2}e^{ikr}(1+O(r^{-1})),\qquad r\to\infty,\quad\omega=\frac x{r}.
$$
The asymptotics of the scattering amplitude $f(\omega,k)$ for $\omega\in S^{n-1}$ is obtained as $k\to+\infty$. It can be represented in the form of a sum of two canonical operators of V. P. Maslov, constructed from the $(n-1)$-dimensional Lagrangian manifolds $L_0$, $L_+\subset T^*S^{n-1}$.
Let $\Lambda^n$ be the $n$-dimensional Lagrangian manifold comprised of the bicharacteristics corresponding to the problem under consideration, and let $s$ be a parameter along the bicharacteristics. The manifold $L_+$ can be obtained from $\Lambda^n$ by passing to spherical coordinates in $\mathbf R^{2n}_{x,p}$ projecting $\Lambda^n$ on to $T^*S^{n-1}$ and letting s go to infinity. The manifold $L_0$ coincides with $L_+$ for $q\equiv1$.
Bibliography: 5 titles
@article{SM_1983_45_4_a5,
author = {Yu. N. Protas},
title = {Quasiclassical asymptotics of the scattering amplitude for the scattering of a~plane wave by inhomogeneities of the medium},
journal = {Sbornik. Mathematics},
pages = {487--506},
publisher = {mathdoc},
volume = {45},
number = {4},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_45_4_a5/}
}
TY - JOUR AU - Yu. N. Protas TI - Quasiclassical asymptotics of the scattering amplitude for the scattering of a~plane wave by inhomogeneities of the medium JO - Sbornik. Mathematics PY - 1983 SP - 487 EP - 506 VL - 45 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_45_4_a5/ LA - en ID - SM_1983_45_4_a5 ER -
%0 Journal Article %A Yu. N. Protas %T Quasiclassical asymptotics of the scattering amplitude for the scattering of a~plane wave by inhomogeneities of the medium %J Sbornik. Mathematics %D 1983 %P 487-506 %V 45 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1983_45_4_a5/ %G en %F SM_1983_45_4_a5
Yu. N. Protas. Quasiclassical asymptotics of the scattering amplitude for the scattering of a~plane wave by inhomogeneities of the medium. Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 487-506. http://geodesic.mathdoc.fr/item/SM_1983_45_4_a5/