Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium
Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 487-506
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $[\Delta+k^2q(x)]\psi(x,k)=0$, where $x\in\mathbf R^n$, $q(x)\in C^\infty$, $q(x)>0$, $q(x)\equiv1$ for $r=|x|>a$, and $\psi(x,k)=e^{ikx_n}+u(x,k)$, in which the function $u$ satisfies the radiation conditions $$ u(x,k)=f(\omega,k)r^{(1-n)/2}e^{ikr}(1+O(r^{-1})),\qquad r\to\infty,\quad\omega=\frac x{r}. $$ The asymptotics of the scattering amplitude $f(\omega,k)$ for $\omega\in S^{n-1}$ is obtained as $k\to+\infty$. It can be represented in the form of a sum of two canonical operators of V. P. Maslov, constructed from the $(n-1)$-dimensional Lagrangian manifolds $L_0$, $L_+\subset T^*S^{n-1}$. Let $\Lambda^n$ be the $n$-dimensional Lagrangian manifold comprised of the bicharacteristics corresponding to the problem under consideration, and let $s$ be a parameter along the bicharacteristics. The manifold $L_+$ can be obtained from $\Lambda^n$ by passing to spherical coordinates in $\mathbf R^{2n}_{x,p}$ projecting $\Lambda^n$ on to $T^*S^{n-1}$ and letting s go to infinity. The manifold $L_0$ coincides with $L_+$ for $q\equiv1$. Bibliography: 5 titles
@article{SM_1983_45_4_a5,
author = {Yu. N. Protas},
title = {Quasiclassical asymptotics of the scattering amplitude for the scattering of a~plane wave by inhomogeneities of the medium},
journal = {Sbornik. Mathematics},
pages = {487--506},
year = {1983},
volume = {45},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_45_4_a5/}
}
TY - JOUR AU - Yu. N. Protas TI - Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium JO - Sbornik. Mathematics PY - 1983 SP - 487 EP - 506 VL - 45 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_1983_45_4_a5/ LA - en ID - SM_1983_45_4_a5 ER -
Yu. N. Protas. Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium. Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 487-506. http://geodesic.mathdoc.fr/item/SM_1983_45_4_a5/
[1] Vainberg B. R., “Kvaziklassicheskoe priblizhenie v statsionarnykh zadachakh rasseyaniya”, Funk. analiz, 1977, no. 4, 6–18 | MR | Zbl
[2] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[3] Kucherenko V. V., “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR
[4] Gantmakher F. R., Teoriya matrits, Izd. 2-e, dop., Nauka, M., 1966 | MR
[5] Protas Yu. N., “Asimptotika amplitudy rasseyaniya voln v neodnorodnoi srede”, UMN, 35:4 (1980), 176