The integration of the equations for geodesics of left-invariant metrics on simple Lie groups using special functions
Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 473-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies a multiparameter family of left-invariant metrics on simple Lie groups which generalizes the inertia tensor of an $n$-dimensional rigid body. A class of solutions is produced for the geodesic equations on simple linear groups expressed in terms of quasipolynomials. For groups of complex matrices with determinant one, explicit formulas are found for the matrix elements of geodesics. The matrix elements are polynomials in exponentials and in theta-functions on Riemann surfaces. Bibliography: 11 title
@article{SM_1983_45_4_a4,
     author = {M. V. Meshcheryakov},
     title = {The integration of the equations for geodesics of left-invariant metrics on simple {Lie} groups using special functions},
     journal = {Sbornik. Mathematics},
     pages = {473--485},
     year = {1983},
     volume = {45},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_4_a4/}
}
TY  - JOUR
AU  - M. V. Meshcheryakov
TI  - The integration of the equations for geodesics of left-invariant metrics on simple Lie groups using special functions
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 473
EP  - 485
VL  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_4_a4/
LA  - en
ID  - SM_1983_45_4_a4
ER  - 
%0 Journal Article
%A M. V. Meshcheryakov
%T The integration of the equations for geodesics of left-invariant metrics on simple Lie groups using special functions
%J Sbornik. Mathematics
%D 1983
%P 473-485
%V 45
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1983_45_4_a4/
%G en
%F SM_1983_45_4_a4
M. V. Meshcheryakov. The integration of the equations for geodesics of left-invariant metrics on simple Lie groups using special functions. Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 473-485. http://geodesic.mathdoc.fr/item/SM_1983_45_4_a4/

[1] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[2] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz, 10:4 (1976), 93–95 | MR

[3] Mischenko A. S, Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR, ser. matem., 42 (1978), 396–415 | MR | Zbl

[4] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR

[6] Mescheryakov M. V., “Zamechanie o dinamicheskikh sistemakh na poluprostykh algebrakh Li”, Vestnik MGU, ser. 1, matem.-mekh., 1980, no. 6, 17–19 | Zbl

[7] Burbaki N., Gruppy i algebry Li, Mir, M., 1978 | MR

[8] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[9] Trofimov V. V., “Uravneniya Eilera na borelevskikh podalgebrakh Li poluprostykh algebr Li”, Izv. AN SSSR, ser. matem., 43 (1979), 714–732 | MR | Zbl

[10] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Gostekhizdat, M., L., 1949

[11] Komrakov B. P., Struktury na mnogoobraziyakh i odnorodnye prostranstva, Nauka i tekhnika, Minsk, 1978 | MR