On stability conditions for a family of nonselfadjoint difference schemes
Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 431-437
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article, stability with respect to initial data of a family of explicit nonselfadjoint operator-difference schemes defined on the direct sum of two spaces is studied. Necessary and sufficient conditions for stability in the energy norms are obtained. The equivalence of the norms obtained to the mesh norm $L_2$ is proved. Bibliography: 3 titles.
@article{SM_1983_45_4_a1,
author = {A. V. Gulin and A. A. Martynov},
title = {On stability conditions for a family of nonselfadjoint difference schemes},
journal = {Sbornik. Mathematics},
pages = {431--437},
year = {1983},
volume = {45},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_45_4_a1/}
}
A. V. Gulin; A. A. Martynov. On stability conditions for a family of nonselfadjoint difference schemes. Sbornik. Mathematics, Tome 45 (1983) no. 4, pp. 431-437. http://geodesic.mathdoc.fr/item/SM_1983_45_4_a1/
[1] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[2] Gulin A. V., Ustoichivost raznostnykh skhem, opredelennykh na pryamoi summe prostranstv, Preprint IPM AN SSSR, No 173, 1979
[3] Ardelyan N. V., Gulin A. V., K obosnovaniyu ustoichivosti raznostnykh skhem dlya uravnenii akustiki, Preprint IPM AN SSSR, No 96, 1978 | MR