A bound for the growth in a half-strip of a~function represented by a~Dirichlet series
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 411-422

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function defined by a Dirichlet series that converges in a right half-plane, we introduce the $R$-order $\rho$ in the half-plane and the $R$-order $\rho_s$ in a half-strip $S=\{s=\sigma+it:\sigma>0,\ |t|$. Under certain restrictions on the width of the half-strip, we obtain the inequalities $\rho_s\leqslant\rho\leqslant\rho_s+q$, where $q$ is defined by a sequence of powers. The two extreme inequalities are sharp. Bibliography: 3 titles.
@article{SM_1983_45_3_a5,
     author = {A. M. Gaisin},
     title = {A bound for the growth in a half-strip of a~function represented by {a~Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {411--422},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a5/}
}
TY  - JOUR
AU  - A. M. Gaisin
TI  - A bound for the growth in a half-strip of a~function represented by a~Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 411
EP  - 422
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_3_a5/
LA  - en
ID  - SM_1983_45_3_a5
ER  - 
%0 Journal Article
%A A. M. Gaisin
%T A bound for the growth in a half-strip of a~function represented by a~Dirichlet series
%J Sbornik. Mathematics
%D 1983
%P 411-422
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_3_a5/
%G en
%F SM_1983_45_3_a5
A. M. Gaisin. A bound for the growth in a half-strip of a~function represented by a~Dirichlet series. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 411-422. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a5/