The Fourier transform of the characteristic function of a set, vanishing on an interval
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 397-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A set $E$ with $0<\operatorname{mes}E<+\infty$ is constructed for which the Fourier transform of its characteristic function vanishes on an interval. The set is the union of a sequence of intervals whose lengths can be estimated asymptotically above and below. The construction is based on an infinite-dimensional version of the implicit function theorem. Bibiography: 6 titles.
@article{SM_1983_45_3_a4,
     author = {P. P. Kargaev},
     title = {The {Fourier} transform of the characteristic function of a~set, vanishing on an~interval},
     journal = {Sbornik. Mathematics},
     pages = {397--410},
     year = {1983},
     volume = {45},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a4/}
}
TY  - JOUR
AU  - P. P. Kargaev
TI  - The Fourier transform of the characteristic function of a set, vanishing on an interval
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 397
EP  - 410
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_3_a4/
LA  - en
ID  - SM_1983_45_3_a4
ER  - 
%0 Journal Article
%A P. P. Kargaev
%T The Fourier transform of the characteristic function of a set, vanishing on an interval
%J Sbornik. Mathematics
%D 1983
%P 397-410
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1983_45_3_a4/
%G en
%F SM_1983_45_3_a4
P. P. Kargaev. The Fourier transform of the characteristic function of a set, vanishing on an interval. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 397-410. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a4/

[1] Sapogov N. A., “O preobrazovanii Fure indikatora mnozhestva konechnoi lebegovoi mery v $\mathbf R^n$”, 3an. nauchn. sem. LOMI, 81 (1978), 73

[2] Beurling A., Lectures on quasi-analiticity, A. M. S. Summer Institute, Stanford, 1961

[3] Sapogov N. A., “Ob odnoi probleme edinstvennosti dlya konechnykh mer v evklidovykh prostranstvakh”, Zap. nauchn. sem. LOMI, 41 (1974), 3–13 | MR | Zbl

[4] Kartan A., Differentsialnoe ischislenie, differentsialnye formy, Mir, M., 1971 | MR | Zbl

[5] Mandelbroit S., Ryady Dirikhle, printsipy i metody, Mir, M., 1973 | Zbl

[6] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979 | MR | Zbl