The Fourier transform of the characteristic function of a~set, vanishing on an~interval
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 397-410
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A set $E$ with $0\operatorname{mes}E+\infty$ is constructed for which the Fourier transform of its characteristic function vanishes on an interval. The set is the union of a sequence of intervals whose lengths can be estimated asymptotically above and below. The construction is based on an infinite-dimensional version of the implicit function theorem.
Bibiography: 6 titles.
			
            
            
            
          
        
      @article{SM_1983_45_3_a4,
     author = {P. P. Kargaev},
     title = {The {Fourier} transform of the characteristic function of a~set, vanishing on an~interval},
     journal = {Sbornik. Mathematics},
     pages = {397--410},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a4/}
}
                      
                      
                    P. P. Kargaev. The Fourier transform of the characteristic function of a~set, vanishing on an~interval. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 397-410. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a4/
