Linear forms in the values of $G$-functions, and Diophantine equations
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 379-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a rather general theorem on $G$-functions proved in this paper, the author establishes the existence of an effective upper bound for the solutions of certain Diophantine equations, such as those of the form $$ a_1x^g_1-a_2x^g_2=p_1^{z_1}\cdots p_k^{z_k}G(x_1,x_2), $$ where $a_1,a_2$ and $p_1,\dots,p_k$ are natural numbers and $G(x_1, x_2)$ is a polynomial of small degree. The upper bound has the form $$ \max(|x_1|,|x_2|)\leqslant(\xi H(G))^{1/(g-\gamma-\operatorname{deg}G)}, $$ where $\gamma$ depends on $a_1,a_2$ and $p_1,\dots,p_k$ and can be written out explicitly, and $\xi$ is an effective positive constant. Bibliography: 17 titles.
@article{SM_1983_45_3_a3,
     author = {E. M. Matveev},
     title = {Linear forms in the values of $G$-functions, and {Diophantine} equations},
     journal = {Sbornik. Mathematics},
     pages = {379--396},
     year = {1983},
     volume = {45},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - Linear forms in the values of $G$-functions, and Diophantine equations
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 379
EP  - 396
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/
LA  - en
ID  - SM_1983_45_3_a3
ER  - 
%0 Journal Article
%A E. M. Matveev
%T Linear forms in the values of $G$-functions, and Diophantine equations
%J Sbornik. Mathematics
%D 1983
%P 379-396
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/
%G en
%F SM_1983_45_3_a3
E. M. Matveev. Linear forms in the values of $G$-functions, and Diophantine equations. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 379-396. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/

[1] Siegel C. L., “Über einige Anwendungen Diophantischer Approximationen”, Abh. Presuss. Akad. Wiss., Phys.-Math. Kl., 1 (1929), 1–70 | Zbl

[2] Shidlovskii A. B., “O kriterii algebraicheskoi nezavisimosti znachenii odnogo klassa tselykh funktsii”, Izv. AN SSSR, ser. matem., 23 (1959), 35–66 | Zbl

[3] Shidlovskii A. B., “O transtsendentnosti i algebraicheskoi nezavisimosti znachenii tselykh funktsii nekotorykh klassov”, Uch. zap. MGU, 186 (1959), 11–70 | MR | Zbl

[4] Nurmagomedov M. S., “Ob arifmeticheskikh svoistvakh znachenii odnogo klassa analiticheskikh funktsii”, Matem. sb., 85 (127) (1971), 339–365 | MR | Zbl

[5] Nurmagomedov M. S., “Ob arifmeticheskikh svoistvakh znachenii $G$-funktsii”, Vestnik Mosk. Un-ta. Matem. mekhan., 1971, no. 6, 79–86 | MR | Zbl

[6] Galochkin A. I., “Otsenki snizu mnogochlenov ot znachenii analiticheskikh funktsii odnogo klassa”, Matem. sb., 95 (137) (1974), 396–417 | Zbl

[7] Galochkin A. I., “Otsenki snizu lineinykh form ot znachenii nekotorykh $G$-funktsii”, Matem. zametki, 18:4 (1975), 541–552 | MR | Zbl

[8] Flicker Y. Z., “On $p$-adic $G$-functions”, J. London Math. Soc., 15 (1977), 395–402 | DOI | MR | Zbl

[9] Baker A., “Rational approximations to certain algebraic numbers”, Proc. London Math. Soc., 14 (1964), 385–398 | DOI | MR | Zbl

[10] Baker A., “Rational approximations to $\sqrt[3]{2}$ and other algebraic numbers”, Quart. J. Math., 60 (1964), 375–383 | DOI | MR

[11] Baker A., “Simultaneous rational approximations to certain algebraic numbers”, Proc. Cambridge Phil. Soc., 63 (1967), 693–702 | DOI | MR | Zbl

[12] Feldman N. I., “Effektivnye granitsy dlya velichiny reshenii nekotorykh diofantovykh uravnenii”, Matem. zametki, 8:3 (1970), 361–371

[13] Bundschuh P., “Zur Approximation gewisser $p$-adischer algebraic Zahlen durch rationale Zahlen”, J. reine und angew. Math., 265 (1974), 155–159 | MR

[14] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[15] Borevich Z. I., Shafarovich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[16] Algebraicheskaya teoriya chisel (sbornik pod red. Dzh. Kasselsa i A. Frelikha), Mir, M., 1969 | MR

[17] Väänänen K., “On linear forms of a certain class of $G$-functions and $p$-adic $G$-functions”, Acta Arith., 36 (1980), 273–295 | MR | Zbl