Linear forms in the values of $G$-functions, and Diophantine equations
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 379-396

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a rather general theorem on $G$-functions proved in this paper, the author establishes the existence of an effective upper bound for the solutions of certain Diophantine equations, such as those of the form $$ a_1x^g_1-a_2x^g_2=p_1^{z_1}\cdots p_k^{z_k}G(x_1,x_2), $$ where $a_1,a_2$ and $p_1,\dots,p_k$ are natural numbers and $G(x_1, x_2)$ is a polynomial of small degree. The upper bound has the form $$ \max(|x_1|,|x_2|)\leqslant(\xi H(G))^{1/(g-\gamma-\operatorname{deg}G)}, $$ where $\gamma$ depends on $a_1,a_2$ and $p_1,\dots,p_k$ and can be written out explicitly, and $\xi$ is an effective positive constant. Bibliography: 17 titles.
@article{SM_1983_45_3_a3,
     author = {E. M. Matveev},
     title = {Linear forms in the values of $G$-functions, and {Diophantine} equations},
     journal = {Sbornik. Mathematics},
     pages = {379--396},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - Linear forms in the values of $G$-functions, and Diophantine equations
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 379
EP  - 396
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/
LA  - en
ID  - SM_1983_45_3_a3
ER  - 
%0 Journal Article
%A E. M. Matveev
%T Linear forms in the values of $G$-functions, and Diophantine equations
%J Sbornik. Mathematics
%D 1983
%P 379-396
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/
%G en
%F SM_1983_45_3_a3
E. M. Matveev. Linear forms in the values of $G$-functions, and Diophantine equations. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 379-396. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/