Linear forms in the values of $G$-functions, and Diophantine equations
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 379-396
Voir la notice de l'article provenant de la source Math-Net.Ru
Using a rather general theorem on $G$-functions proved in this paper, the author establishes the existence of an effective upper bound for the solutions of certain Diophantine equations, such as those of the form
$$
a_1x^g_1-a_2x^g_2=p_1^{z_1}\cdots p_k^{z_k}G(x_1,x_2),
$$
where $a_1,a_2$ and $p_1,\dots,p_k$ are natural numbers and $G(x_1, x_2)$ is a polynomial of small degree. The upper bound has the form
$$
\max(|x_1|,|x_2|)\leqslant(\xi H(G))^{1/(g-\gamma-\operatorname{deg}G)},
$$
where $\gamma$ depends on $a_1,a_2$ and $p_1,\dots,p_k$ and can be written out explicitly, and $\xi$ is an effective positive constant.
Bibliography: 17 titles.
@article{SM_1983_45_3_a3,
author = {E. M. Matveev},
title = {Linear forms in the values of $G$-functions, and {Diophantine} equations},
journal = {Sbornik. Mathematics},
pages = {379--396},
publisher = {mathdoc},
volume = {45},
number = {3},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/}
}
E. M. Matveev. Linear forms in the values of $G$-functions, and Diophantine equations. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 379-396. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a3/