Free interpolation in the spaces $ C^A_{r,\omega}$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 337-358
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let the integer $r\geqslant0$ and the modulus of continuity $\omega(t)$ be fixed, and let $C^A_{r,\omega}$ be the class of all functions continuous on the closed unit disk $\overline D$, analytic on its interior $D$, and having an $\omega$-continuous $r$th derivative on $\overline D$.
 Consider for each $f\in C^A_{r,\omega}$ and each fixed $\zeta\in\overline D$ the polynomial in $z$
$$
P_{r,\zeta}(z;f)=\sum_{\nu=0}^r \dfrac{f^{(\nu)}(\zeta)}{\nu!}
$$
(the $(r+1)$st partial sum of the Taylor series of $f$ in a neighborhood of $\zeta$). Then for any two points $\zeta_1,\zeta_2\in\overline D$
\begin{equation}
\begin{gathered}
|(P_{r,\zeta_1}(z)-P_{r,\zeta_2}(z))^{(\nu)}|_{z=\zeta_1}\leqslant c_f|\zeta_1-\zeta_2|^{r-\nu}\omega(|\zeta_1-\zeta_2|),
\\ 
P_{\,\cdot\,,\,\cdot\,}(\,\cdot\,)=P_{\,\cdot\,,\,\cdot\,}(\,\cdot\,;f),\qquad 0\leqslant\nu\leqslant r.
\end{gathered}
\tag{1.1}
\end{equation} Let $E$ be a closed subset of $\overline D$. This article contains a solution of the problem of free interpolation in $C^A_{r,\omega}$, formulated as follows: find necessary and sufficient conditions on $E$ such that for each collection $\{P_\zeta\}_{\zeta\in E}$ of $r$th-degree polynomials satisfying conditions of the type (1.1) for all $\zeta_1,\zeta_2\in E$ there is a function $f\in C^A_{r,\omega}$ with $P_\zeta(\,\cdot\,)=P_{r,\zeta}(\,\cdot\,;f)$.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1983_45_3_a1,
     author = {N. A. Shirokov},
     title = {Free interpolation in the spaces $ C^A_{r,\omega}$},
     journal = {Sbornik. Mathematics},
     pages = {337--358},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a1/}
}
                      
                      
                    N. A. Shirokov. Free interpolation in the spaces $ C^A_{r,\omega}$. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 337-358. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a1/
                  
                