Regularity of the boundaries of analytic sets
Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 291-335

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the author studies the boundary behavior of a one-dimensional complex analytic set $A$ in a neighborhood of a totally real manifold $M$ in $\mathbf C^n$ with smoothness greater than 1. He proves that the limit points of $A$ on $M$ form a set of locally finite length and that near almost every limit point the closure of $A$ is either a manifold with boundary (with smoothness corresponding to $M$) or a union of two manifolds with boundary. He investigates the structure of the tangent cone to $A$ at the limit points and proves a theorem concerning the boundary regularity of holomorphic discs “glued” to $M$. Bibliography: 22 titles.
@article{SM_1983_45_3_a0,
     author = {E. M. Chirka},
     title = {Regularity of the boundaries of analytic sets},
     journal = {Sbornik. Mathematics},
     pages = {291--335},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_3_a0/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Regularity of the boundaries of analytic sets
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 291
EP  - 335
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_3_a0/
LA  - en
ID  - SM_1983_45_3_a0
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Regularity of the boundaries of analytic sets
%J Sbornik. Mathematics
%D 1983
%P 291-335
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_3_a0/
%G en
%F SM_1983_45_3_a0
E. M. Chirka. Regularity of the boundaries of analytic sets. Sbornik. Mathematics, Tome 45 (1983) no. 3, pp. 291-335. http://geodesic.mathdoc.fr/item/SM_1983_45_3_a0/