On the solvability of quasilinear elliptic equations of arbitrary order
Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 257-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quasilinear elliptic equations of arbitrary order $2m\geqslant2$ with smooth linear operators under general linear boundary conditions are considered in the space $W_p^{2m}(\Omega)$, $p>1$. Theorems are given presenting a priori estimates of $\|u\|_{2m,p}$ in terms of $\|u\|_{k,\infty}\equiv\sum\limits_{|\gamma|\leqslant k}\sup\limits_\Omega|D^\gamma u(x)|$ with some $k$, $0\leqslant k\leqslant 2m-1$, and in terms of $\|u\|_{m,2}$. For these cases, a critical power law growth is obtained for the nonlinear operator relative to the relevant derivatives. Counterexamples are constructed to show that this critical characteristic growth law cannot be improved without additional assumptions. On the basis of this theory, existence theorems for certain quasilinear elliptic problems are established under the condition that there exists an a priori estimate for $\|u\|_{k,\infty}$ (in the appropriate family of such problems). An existence theorem is also obtained for the solvability of the Dirichlet boundary value problem for some quasilinear elliptic equations of arbitrary order. Examples are given. Bibliography: 11 titles.
@article{SM_1983_45_2_a6,
     author = {S. I. Pokhozhaev},
     title = {On the solvability of quasilinear elliptic equations of arbitrary order},
     journal = {Sbornik. Mathematics},
     pages = {257--271},
     year = {1983},
     volume = {45},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_2_a6/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On the solvability of quasilinear elliptic equations of arbitrary order
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 257
EP  - 271
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_2_a6/
LA  - en
ID  - SM_1983_45_2_a6
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On the solvability of quasilinear elliptic equations of arbitrary order
%J Sbornik. Mathematics
%D 1983
%P 257-271
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_45_2_a6/
%G en
%F SM_1983_45_2_a6
S. I. Pokhozhaev. On the solvability of quasilinear elliptic equations of arbitrary order. Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 257-271. http://geodesic.mathdoc.fr/item/SM_1983_45_2_a6/

[1] Vishik M. I., “Kvazilineinye silno ellipticheskie sistemy differentsialnykh uravnenii, imeyuschie divergentnuyu formu”, Tr. Mosk. matem. o-va, 12, 1963, 125–184 | Zbl

[2] Browder F. E., “Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms”, Proc. Symp. Pure Math., 23, Amer. Math. Soc., Providence, RI, 1973, 269–286 | MR | Zbl

[3] von Wahl W., “Semilinear elliptic and parabolic equations of arbitary order”, Proc. Royal Soc. Edinburgh, 78A (1978), 193–207 | MR

[4] Luckhaus St., “Existence and regularity of weak solutions to the Dirichletproblem for semilinear elliptic systems of higher order”, J. Reine Angew. Math., 306 (1979), 192–207 | MR | Zbl

[5] Pokhozhaev S. I., “O kvazilineinykh ellipticheskikh uravneniyakh vysokogo poryadka”, Diff. uravneniya, 17:1 (1981), 115–128 | MR | Zbl

[6] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[7] Nirenberg L., “An extended interpolation inequality”, Ann. Sci. Norm. Sup. Pisa, 20:IV (1966), 733–737 | MR | Zbl

[8] Friedman A., Partial Differential Equations, Academic Press, New York, 1969 | MR

[9] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo SO AN SSSR, Novosibirsk, 1962

[10] Pokhozhaev S. I., “O teoreme vlozheniya S. L. Soboleva v sluchae $pl=n$”, Dokl. nauchno-tekhn. konferentsii, sektsiya matem, MEI, Moskva, 1965, 158–170

[11] Arakcheev S. A., “O nekotorykh klassakh lineinykh i kvazilineinykh ellipticheskikh uravnenii s summiruemymi koeffitsientami”, Diff. uravneniya, 14:7 (1977), 1224–1234 | MR