Three-series theorems for locally compact groups
Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 225-241

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with conditions for the convergence of the product $\prod\limits_1^\infty\xi_n$ of independent random variables $\xi_n$ taking values in an arbitrary locally compact group $G$. For various types of groups necessary and sufficient conditions are given for the convergence of this product almost everywhere, expressed in terms of the group $G$. They can be regarded as analogues of the classical three-series theorem. Bibliography: 14 titles
@article{SM_1983_45_2_a4,
     author = {V. M. Maksimov},
     title = {Three-series theorems for locally compact groups},
     journal = {Sbornik. Mathematics},
     pages = {225--241},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_2_a4/}
}
TY  - JOUR
AU  - V. M. Maksimov
TI  - Three-series theorems for locally compact groups
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 225
EP  - 241
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_2_a4/
LA  - en
ID  - SM_1983_45_2_a4
ER  - 
%0 Journal Article
%A V. M. Maksimov
%T Three-series theorems for locally compact groups
%J Sbornik. Mathematics
%D 1983
%P 225-241
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_2_a4/
%G en
%F SM_1983_45_2_a4
V. M. Maksimov. Three-series theorems for locally compact groups. Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 225-241. http://geodesic.mathdoc.fr/item/SM_1983_45_2_a4/