Affine transformations of a transversal projectable connection on a foliated manifold
Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 191-204

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the principal bundle of quotient-frames on a foliated manifold. This paper gives, and supplements, results about canonical, transversal and projectable forms, about foliated vector fields and their natural lifts, and about lifted foliations. The basic cross-sections of a transversal connection are introduced and studied. Criteria for transversality and projectability of connections in the quotient-frame bundle are established, and it is shown that the quotient Lie algebra consisting of the infinitesimal affine transformations of a projectable connection is finite-dimensional, and that so is the quotient Lie group consisting of affine transformations of a transversally-complete, projectable connection on a manifold with a transversally orientable foliation having a closed leaf. Bibliography: 19 titles.
@article{SM_1983_45_2_a2,
     author = {I. V. Bel'ko},
     title = {Affine transformations of a transversal projectable connection on a foliated manifold},
     journal = {Sbornik. Mathematics},
     pages = {191--204},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/}
}
TY  - JOUR
AU  - I. V. Bel'ko
TI  - Affine transformations of a transversal projectable connection on a foliated manifold
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 191
EP  - 204
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/
LA  - en
ID  - SM_1983_45_2_a2
ER  - 
%0 Journal Article
%A I. V. Bel'ko
%T Affine transformations of a transversal projectable connection on a foliated manifold
%J Sbornik. Mathematics
%D 1983
%P 191-204
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/
%G en
%F SM_1983_45_2_a2
I. V. Bel'ko. Affine transformations of a transversal projectable connection on a foliated manifold. Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 191-204. http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/