Affine transformations of a transversal projectable connection on a foliated manifold
Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 191-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider the principal bundle of quotient-frames on a foliated manifold. This paper gives, and supplements, results about canonical, transversal and projectable forms, about foliated vector fields and their natural lifts, and about lifted foliations. The basic cross-sections of a transversal connection are introduced and studied. Criteria for transversality and projectability of connections in the quotient-frame bundle are established, and it is shown that the quotient Lie algebra consisting of the infinitesimal affine transformations of a projectable connection is finite-dimensional, and that so is the quotient Lie group consisting of affine transformations of a transversally-complete, projectable connection on a manifold with a transversally orientable foliation having a closed leaf. Bibliography: 19 titles.
@article{SM_1983_45_2_a2,
     author = {I. V. Bel'ko},
     title = {Affine transformations of a transversal projectable connection on a foliated manifold},
     journal = {Sbornik. Mathematics},
     pages = {191--204},
     year = {1983},
     volume = {45},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/}
}
TY  - JOUR
AU  - I. V. Bel'ko
TI  - Affine transformations of a transversal projectable connection on a foliated manifold
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 191
EP  - 204
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/
LA  - en
ID  - SM_1983_45_2_a2
ER  - 
%0 Journal Article
%A I. V. Bel'ko
%T Affine transformations of a transversal projectable connection on a foliated manifold
%J Sbornik. Mathematics
%D 1983
%P 191-204
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/
%G en
%F SM_1983_45_2_a2
I. V. Bel'ko. Affine transformations of a transversal projectable connection on a foliated manifold. Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 191-204. http://geodesic.mathdoc.fr/item/SM_1983_45_2_a2/

[1] Fuks D. B., Kogomologii beskonechnomernykh algebr Li i kharakteristicheskie klassy sloenii, Sovremennye problemy matematiki, 10, VINITI, Moskva, 1978 | MR

[2] Molino P., “Sur la géométrie transverse des feuilletages”, Ann. Inst. Fourier, 25:2 (1975), 279–284 | MR | Zbl

[3] Conlon L., “Transversally parallelizable foliations of codimension two”, Trans. Amer. Math. Soc., 194 (1974), 79–102 | DOI | MR | Zbl

[4] Molino P., “Propriétés cohomologiques et propriétés topologique des feuilletages à connexiontransvers projetable”, Topology, 12:4 (1973), 317–325 | DOI | MR | Zbl

[5] Reinhart B., “Foliated manifolds with bundle-like metrics”, Ann. Math., 69:1 (1959), 119–132 | DOI | MR | Zbl

[6] Vaisman I., “Variétés Riemanniennes feuilletées”, Czech. Math. J., 21 (96):1 (1971), 46–75 | MR | Zbl

[7] Igoshin V. A, Shapiro Ya. L., “Stabilnost sloev sloeniya s sovmestimoi s nim rimanovoi metrikoi”, Matem. zametki, 27:5 (1980), 767–778 | MR | Zbl

[8] Kamber F., Tondeur Ph., “$G$-foliations and their characteristic classes”, Bull. Amer. Math. Soc., 84:6 (1978), 1086–1124 | DOI | MR | Zbl

[9] Blumenthal R., “Transversely homogeneous foliations”, Ann. Inst. Fourier, 29:4 (1979), 143–158 | MR | Zbl

[10] Kobayashi S., Transformation groups in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR

[11] Leslie J., “A remark on the group of automorphisms of a foliations having a dense leaf”, J. Diff. Geom., 7 (1972), 597–601 | MR | Zbl

[12] Nomizu K., “On the group of affine transformations of an affinnely connected manifold”, Proc. Amer. Math. Soc., 4:5 (1953), 816–823 | DOI | MR | Zbl

[13] Tamura I., Topologiya sloenii, Mir, M., 1979 | MR | Zbl

[14] Kobayashi S., Nomizu K., Foundations of differential geometry, V. 1, Interscience Publishers, J. Wiley Sons, New York–London, 1963 | MR | Zbl

[15] Kobayashi S., Nomizu K., Foundations of differential geometry, V. 2, Interscience Publishers, J. Wiley Sons, New York–London, 1969 | MR | Zbl

[16] Molino P., “Connexions et $G$-structures sur les variétés feuiletées”, Bull. Sci. Math., 92:1–2 (1968), 59–63 | MR | Zbl

[17] Zulanke R., Vintgen P., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975

[18] Hermann R., “On the differential geometry of foliations”, Ann. Math., 72:3 (1960), 445–457 | DOI | MR | Zbl

[19] Palais R. S., “A global formulation of the Lie theory of transformation groups”, Mem. Amer. Math., Soc., 22 (1957), 1–123 | MR