Asymptotics of the eigenvalues of hypoelliptic operators on a closed manifold
Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 169-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article an asymptotic formula with an estimate of the remainder term is proved for the distribution function of the eigenvalues of hypoelliptic differential operators on a compact manifold without boundary. The proof is based on a method for constructing an approximate spectral projection for the operators under consideration. Bibliography: 16 titles.
@article{SM_1983_45_2_a1,
     author = {V. I. Bezyaev},
     title = {Asymptotics of the eigenvalues of hypoelliptic operators on a closed manifold},
     journal = {Sbornik. Mathematics},
     pages = {169--189},
     year = {1983},
     volume = {45},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_2_a1/}
}
TY  - JOUR
AU  - V. I. Bezyaev
TI  - Asymptotics of the eigenvalues of hypoelliptic operators on a closed manifold
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 169
EP  - 189
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_2_a1/
LA  - en
ID  - SM_1983_45_2_a1
ER  - 
%0 Journal Article
%A V. I. Bezyaev
%T Asymptotics of the eigenvalues of hypoelliptic operators on a closed manifold
%J Sbornik. Mathematics
%D 1983
%P 169-189
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_45_2_a1/
%G en
%F SM_1983_45_2_a1
V. I. Bezyaev. Asymptotics of the eigenvalues of hypoelliptic operators on a closed manifold. Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 169-189. http://geodesic.mathdoc.fr/item/SM_1983_45_2_a1/

[1] Tulovskii V. N., “Asimptoticheskoe raspredelenie sobstvennykh znachenii differentsialnykh operatorov s peremennymi koeffitsientami”, DAN SSSR, 206:4 (1972), 827–830 | MR | Zbl

[2] Tulovskii V. N., Shubin M. A., “Ob asimptoticheskom raspredelenii sobstvennykh znachenii psevdodifferentsialnykh operatorov v $\mathbf R^n$”, Matem. sb., 92 (134) (1973), 571–588 | MR | Zbl

[3] Feigin V. I., “Asimptoticheskoe raspredelenie sobstvennykh chisel dlya gipoellipticheskikh sistem v $\mathbf R^n$”, Matem. sb., 99 (141) (1976), 594–614 | MR | Zbl

[4] Métivier G., “Fonction spectrale et valeurs propres d'operateurs non elliptiques”, C. r. Acad. scient. Paris, 283:7 (1976), A453–A456 | MR

[5] Birman M. Sh., Solomyak M. Z., Asimptotika spektra differentsialnykh uravnenii, Itogi nauki i tekhniki. Matem. analiz, 14, VINITI, M., 1977 | MR

[6] Moscatelli V. B., Thompson M., “Distribution asymptotique des valeurs propres d'operateurs pseudo-différentiels sur des variétés compactes”, C. r. Acad. scient. Paris, 284:6 (1977), A373–A375 | MR

[7] Pham The Lai, “Theorie spectrale d'une classe d'operateurs différentiels hypoelliptiques”, Comm. part. differ. eq., 2:5 (1977), 439–497 | DOI | MR | Zbl

[8] Feigin V. I., “Novye klassy psevdodifferentsialnykh operatorov v $\mathbf R^n$ i nekotorye prilozheniya”, Tr. Mosk. matem. ob-va, 26 (1978), 155–194 | MR

[9] Andreev A. S., “Asimptotika spektra kraevykh zadach dlya gipoellipticheskikh operatorov “netselogo” poryadka”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Mezhvuzov. tematich. sb., vyp. 2, YarGU, Yaroslavl, 1978, 3–14 | MR | Zbl

[10] Bezyaev V. I., “Asimptotika plotnosti sostoyanii gipoellipticheskikh pochti-periodicheskikh operatorov”, Matem. sb., 105 (147) (1978), 485–511 | Zbl

[11] Boimatov K. X., “Psevdodifferentsialnye operatory s operatornym simvolom”, DAN SSSR, 244:1 (1979), 20–24 | MR

[12] Khërmander L., “Psevdodifferentsialnye, operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Mir, M., 1967, 297–366

[13] Khërmander L., “Integralnye operatory Fure. I”, Matematika, 16:1 (1972), 17–61

[14] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[15] Bezyaev V. I., “Asimptotika sobstvennykh znachenii gipoellipticheskikh operatorov na zamknutom mnogoobrazii”, DAN SSSR, 244:5 (1979), 1054–1057 | MR | Zbl

[16] Kumano-go H., “Algebras of pseudo-differential operators”, J. Fac. Sci. Univ. Tokyo, Sec. 1A, 17:1–2 (1970), 31–50 | MR | Zbl