Defining a surface in 4-dimensional Euclidean space by means of its Grassmann image
Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 155-168

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the following problem is solved: if in the Grassmann manifold $G_{2,4}$ a regular submanifold $\Gamma^2$ of dimension 2 is given, does there exist in Euclidean space $E^4$ a regular surface $F^2$ for which $\Gamma^2$ is the Grassmann image? Sufficient conditions are found for this problem to have a solution and for it to be unique. Bibliography: 9 titles.
@article{SM_1983_45_2_a0,
     author = {Yu. A. Aminov},
     title = {Defining a surface in 4-dimensional {Euclidean} space by means of its {Grassmann} image},
     journal = {Sbornik. Mathematics},
     pages = {155--168},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Defining a surface in 4-dimensional Euclidean space by means of its Grassmann image
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 155
EP  - 168
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_2_a0/
LA  - en
ID  - SM_1983_45_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Defining a surface in 4-dimensional Euclidean space by means of its Grassmann image
%J Sbornik. Mathematics
%D 1983
%P 155-168
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_2_a0/
%G en
%F SM_1983_45_2_a0
Yu. A. Aminov. Defining a surface in 4-dimensional Euclidean space by means of its Grassmann image. Sbornik. Mathematics, Tome 45 (1983) no. 2, pp. 155-168. http://geodesic.mathdoc.fr/item/SM_1983_45_2_a0/