The Steinberg group of a polynomial ring
Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 139-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result of this paper is the following Theorem. {\it If $A$ is a Noetherian ring$,$ then the canonical homomorphism $K_{2, r}(A[x_1,\dots,x_n])\to K_2(A[x_1,\dots,x_n])$ is surjective when $r\geqslant\max(4,\dim A+2)$ and injective when $r\geqslant\max(5,\dim A+3)$.} Bibliography: 9 titles.
@article{SM_1983_45_1_a8,
     author = {M. S. Tulenbaev},
     title = {The {Steinberg} group of a polynomial ring},
     journal = {Sbornik. Mathematics},
     pages = {139--154},
     year = {1983},
     volume = {45},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/}
}
TY  - JOUR
AU  - M. S. Tulenbaev
TI  - The Steinberg group of a polynomial ring
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 139
EP  - 154
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/
LA  - en
ID  - SM_1983_45_1_a8
ER  - 
%0 Journal Article
%A M. S. Tulenbaev
%T The Steinberg group of a polynomial ring
%J Sbornik. Mathematics
%D 1983
%P 139-154
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/
%G en
%F SM_1983_45_1_a8
M. S. Tulenbaev. The Steinberg group of a polynomial ring. Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 139-154. http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/

[1] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974 | MR | Zbl

[2] Bass X., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[3] Suslin A. A., “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR, ser. matem., 41:2 (1977), 235–252 | MR | Zbl

[4] Suslin A. A., Tulenbaev M. S., “Teorema o stabilizatsii dlya $K$-funktora Milnora”, Zap. nauchn. sem. LOMI, 64 (1976), 131–152 | MR | Zbl

[5] Kallen W. van der, “Another presentation for Steinberg groups”, Indig. Math., 39 (1977), 304–312 | MR

[6] Tulenbaev M. S., “Multiplikator Shura gruppy elementarnykh matrits konechnogo poryadka”, Zap. nauchn. sem. LOMI, 86 (1979), 162–169 | MR | Zbl

[7] Loday J.-L., “$K$-théorie algebrique et représentationes de groupes”, Sup. 4 émé série 9, No 3, Ann. scient École Norm., 1976 | MR

[8] Wagoner J. B., “On $K_2$ of the laurent polynomial ring”, Amer. J. Math., XCIII:1 (1971), 123–138 | DOI | MR

[9] Vasershtein L. N., “O stabilizatsii obschei lineinoi gruppy nad koltsom”, Matem. sb., 79 (121) (1969), 405–424