The Steinberg group of a polynomial ring
Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 139-154

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is the following Theorem. {\it If $A$ is a Noetherian ring$,$ then the canonical homomorphism $K_{2, r}(A[x_1,\dots,x_n])\to K_2(A[x_1,\dots,x_n])$ is surjective when $r\geqslant\max(4,\dim A+2)$ and injective when $r\geqslant\max(5,\dim A+3)$.} Bibliography: 9 titles.
@article{SM_1983_45_1_a8,
     author = {M. S. Tulenbaev},
     title = {The {Steinberg} group of a polynomial ring},
     journal = {Sbornik. Mathematics},
     pages = {139--154},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/}
}
TY  - JOUR
AU  - M. S. Tulenbaev
TI  - The Steinberg group of a polynomial ring
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 139
EP  - 154
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/
LA  - en
ID  - SM_1983_45_1_a8
ER  - 
%0 Journal Article
%A M. S. Tulenbaev
%T The Steinberg group of a polynomial ring
%J Sbornik. Mathematics
%D 1983
%P 139-154
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/
%G en
%F SM_1983_45_1_a8
M. S. Tulenbaev. The Steinberg group of a polynomial ring. Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 139-154. http://geodesic.mathdoc.fr/item/SM_1983_45_1_a8/