On differentiability of functions in $L^p$, $0$
Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 101-119

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author studies the connection between smoothness, expressed in terms of the integral modulus of continuity, and the existence of a derivative, understood in some sense, for functions in $L^p$, $0$; an analogous question is considered for boundary values of analytic functions in the Hardy classes $H^p$, $0$. A connection is established between the derivatives of an analytic function in $H^p$ and the derivatives of its boundary value; both global and pointwise derivatives are considered. Bibliography: 25 titles.
@article{SM_1983_45_1_a6,
     author = {V. G. Krotov},
     title = {On differentiability of functions in $L^p$, $0<p<1$},
     journal = {Sbornik. Mathematics},
     pages = {101--119},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_1_a6/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - On differentiability of functions in $L^p$, $0
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 101
EP  - 119
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_1_a6/
LA  - en
ID  - SM_1983_45_1_a6
ER  - 
%0 Journal Article
%A V. G. Krotov
%T On differentiability of functions in $L^p$, $0
%J Sbornik. Mathematics
%D 1983
%P 101-119
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_45_1_a6/
%G en
%F SM_1983_45_1_a6
V. G. Krotov. On differentiability of functions in $L^p$, $0