@article{SM_1983_45_1_a2,
author = {Yu. N. Drozhzhinov},
title = {A~multidimensional {Tauberian} theorem for holomorphic functions of bounded argument and the quasi-asymptotics of passive systems},
journal = {Sbornik. Mathematics},
pages = {45--61},
year = {1983},
volume = {45},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_45_1_a2/}
}
TY - JOUR AU - Yu. N. Drozhzhinov TI - A multidimensional Tauberian theorem for holomorphic functions of bounded argument and the quasi-asymptotics of passive systems JO - Sbornik. Mathematics PY - 1983 SP - 45 EP - 61 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1983_45_1_a2/ LA - en ID - SM_1983_45_1_a2 ER -
%0 Journal Article %A Yu. N. Drozhzhinov %T A multidimensional Tauberian theorem for holomorphic functions of bounded argument and the quasi-asymptotics of passive systems %J Sbornik. Mathematics %D 1983 %P 45-61 %V 45 %N 1 %U http://geodesic.mathdoc.fr/item/SM_1983_45_1_a2/ %G en %F SM_1983_45_1_a2
Yu. N. Drozhzhinov. A multidimensional Tauberian theorem for holomorphic functions of bounded argument and the quasi-asymptotics of passive systems. Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 45-61. http://geodesic.mathdoc.fr/item/SM_1983_45_1_a2/
[1] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[2] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberovy teoremy dlya obobschennykh funktsii s nositelyami v konusakh”, Matem. sb., 108 (150) (1979), 78–90 | MR | Zbl
[3] Shabat B. V., Vvedenie v kompleksnyi analiz, T. II, Nauka, M., 1976 | MR
[4] Drozhzhinov Yu. N., Zavyalov B. I., “Kvaziasimptotika obobschennykh funktsii i tauberovy teoremy v kompleksnoi oblasti”, Matem. sb., 102 (144) (1977), 372–390 | Zbl
[5] Lere Zh., Obobschennoe preobrazovanie Laplasa, Mir, M., 1969 | MR
[6] Chirka E. M., “Teoremy Lindelëfa i Fatu v $\mathbf C^n$”, Matem. sb., 92(134) (1973), 622–644 | Zbl
[7] Nevanlinna R., Odnoznachnye analiticheskie funktsii, OGIZ, M., 1941 | MR
[8] Ludwig D., “Examples of the behavior of solutions of hyperbolic equations for large times”, J. Math. and Mech., 12:4 (1963) | MR | Zbl
[9] Loomis L., “The converse of the Fatou theorem for positiv harmonic functions”, Trans. Amer. Math. Soc., 53 (1943), 239–250 | DOI | MR | Zbl
[10] Gehring F., “Harmonic functions and Tauberian theorems”, Proc., X, London Math. Soc., 1960, 88–106 | MR