Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 31-43
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the author establishes a sharp order estimate, in the mixed norm of $L_p(\mathbf T^n)$ for $1$ and in $L_\infty(\mathbf T^n)$ ($\mathbf T^n =[-\pi,\pi]^n$ is the $n$-dimensional torus), of the derivatives of order $\beta \in \mathbf R^n$ of the multidimensional Dirichlet $\alpha$-kernel $D_{\alpha,\mu}$ and the function $F_{\alpha,\mu}$, $\alpha>0$, $\mu>0$, which are sums of exponentials $e^{i(k,t)}$ lying respectively inside and outside a “graduated hyperbolic cross”, i.e., the set $\{k\in\square_s\mid(\alpha,s)\leqslant \mu\}$, where $\square_s=\{k\in\mathbf Z^n\mid2^{s_{j-1}} \leqslant|k_j|2^{s_j},\, j=1,\ldots,n\}$, $s>0$.
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1983_45_1_a1,
     author = {\`E. M. Galeev},
     title = {Order estimates of derivatives of the multidimensional periodic {Dirichlet} $\alpha$-kernel in a mixed norm},
     journal = {Sbornik. Mathematics},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_1_a1/}
}
                      
                      
                    TY - JOUR AU - È. M. Galeev TI - Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm JO - Sbornik. Mathematics PY - 1983 SP - 31 EP - 43 VL - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_45_1_a1/ LA - en ID - SM_1983_45_1_a1 ER -
È. M. Galeev. Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm. Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/SM_1983_45_1_a1/
