Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm
Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author establishes a sharp order estimate, in the mixed norm of $L_p(\mathbf T^n)$ for $1 and in $L_\infty(\mathbf T^n)$ ($\mathbf T^n =[-\pi,\pi]^n$ is the $n$-dimensional torus), of the derivatives of order $\beta \in \mathbf R^n$ of the multidimensional Dirichlet $\alpha$-kernel $D_{\alpha,\mu}$ and the function $F_{\alpha,\mu}$, $\alpha>0$, $\mu>0$, which are sums of exponentials $e^{i(k,t)}$ lying respectively inside and outside a “graduated hyperbolic cross”, i.e., the set $\{k\in\square_s\mid(\alpha,s)\leqslant \mu\}$, where $\square_s=\{k\in\mathbf Z^n\mid2^{s_{j-1}} \leqslant|k_j|<2^{s_j},\, j=1,\ldots,n\}$, $s>0$. Bibliography: 11 titles.
@article{SM_1983_45_1_a1,
     author = {\`E. M. Galeev},
     title = {Order estimates of derivatives of the multidimensional periodic {Dirichlet} $\alpha$-kernel in a mixed norm},
     journal = {Sbornik. Mathematics},
     pages = {31--43},
     year = {1983},
     volume = {45},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_1_a1/}
}
TY  - JOUR
AU  - È. M. Galeev
TI  - Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 31
EP  - 43
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_1_a1/
LA  - en
ID  - SM_1983_45_1_a1
ER  - 
%0 Journal Article
%A È. M. Galeev
%T Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm
%J Sbornik. Mathematics
%D 1983
%P 31-43
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1983_45_1_a1/
%G en
%F SM_1983_45_1_a1
È. M. Galeev. Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm. Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/SM_1983_45_1_a1/

[1] Babenko K. I., “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, DAN SSSR, 132:5 (1960), 982–985 | MR | Zbl

[2] Bugrov Ya. S., “Konstruktivnaya kharakteristika klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Trudy Matem. in-ta im. V. A. Steklova, CXXXI (1974), 25–32 | MR

[3] Nikolskaya N. S., “Priblizhenie differentsiruemykh funktsii mnogikh peremennykh summami Fure v metrike $L_p$”, DAN SSSR, 208:6 (1973), 1282–1285

[4] Telyakovskii S. A., “Ob otsenkakh proizvodnykh trigonometricheskikh polinomov mnogikh peremennykh”, Sib. matem. zh., IV:6 (1963), 1404–1411

[5] Temlyakov V. N., “Priblizhenie periodicheskikh funktsii neskolkikh peremennykh s ogranichennoi smeshannoi proizvodnoi”, DAN SSSR, 248:3 (1979), 527–531 | MR | Zbl

[6] Temlyakov V. N., “O priblizhenii periodicheskikh funktsii neskolkikh peremennykh s ogranichennoi smeshannoi raznostyu”, DAN SSSR, 253:3 (1980), 544–548 | MR | Zbl

[7] Yudin A. A., Yudin V. A., “Diskretnye teremy vlozheniya i konstanty Lebega”, Matem. zametki, 22:3 (1977), 381–394 | MR | Zbl

[8] Galeev E. M., “Priblizhenie nekotorykh klassov periodicheskikh funktsii mnogikh peremennykh summami Fure v metrike $L_p$”, Uspekhi matem. nauk, XXXII:4 (1977), 251–252 | MR

[9] Galeev E. M., “Priblizhenie summami Fure klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Matem. zametki, 23:2 (1978), 197–212 | MR | Zbl

[10] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[11] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948