Normal forms of one-dimensional quasihomogeneous complete intersections
Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 1-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the author presents an approach to the problem of classifying quasihomogeneous singularities, based on the use of simple properties of deformation theories of such singularities. By means of Grothendieck local duality the Poincaré series of the space of the first cotangent functor $T^1$ of a one-dimensional singularity is computed. Lists of normal forms and monomial bases of the spaces of $T^1$ are given for one-dimensional quasihomogeneous complete intersections with inner modality 0 and 1, and also with Milnor number less than seventeen. An adjacency diagram is constructed for all singularities that have been found. Bibliography: 33 titles.
@article{SM_1983_45_1_a0,
     author = {A. G. Aleksandrov},
     title = {Normal forms of one-dimensional quasihomogeneous complete intersections},
     journal = {Sbornik. Mathematics},
     pages = {1--30},
     year = {1983},
     volume = {45},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_45_1_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - Normal forms of one-dimensional quasihomogeneous complete intersections
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 1
EP  - 30
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1983_45_1_a0/
LA  - en
ID  - SM_1983_45_1_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T Normal forms of one-dimensional quasihomogeneous complete intersections
%J Sbornik. Mathematics
%D 1983
%P 1-30
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1983_45_1_a0/
%G en
%F SM_1983_45_1_a0
A. G. Aleksandrov. Normal forms of one-dimensional quasihomogeneous complete intersections. Sbornik. Mathematics, Tome 45 (1983) no. 1, pp. 1-30. http://geodesic.mathdoc.fr/item/SM_1983_45_1_a0/

[1] Altman A., Kleiman S., Introduction to Grothendieck Duality Theory, V. 146, Lecture Notes in Math., Springer-Verlag, 1971 | MR

[2] Arnold V. I., “Normalnye formy funktsii v okrestnosti vyrozhdennykh kriticheskikh tochek”, UMN, XXIX:2 (1974), 11–49 | MR | Zbl

[3] Arnold V., “On some problems in singularity theory”, Geometry and Analysis: papers dedicated to the memory of V. K. Patodi, Bombay, 1978, 21–28 | MR

[4] Bǎnicǎ C., Stǎnǎşilǎ O., Algebraic Methods in the Global Theory of Complex Spaces, Wiley Interscience, New York, 1976 | MR

[5] Briskorn E., “Monodromiya izolirovannykh osobennostei giperpoverkhnostei”, Matematika, 15:4 (1971), 130–160

[6] Giusli M., “Sur les singularites isolees d'intersections completes quasi-homogenes”, Ann. Inst. Fourier, 27:3 (1977), 163–192 | MR

[7] Giusli M., “Classification des singularites isolees d'intersections completes simples”, C. r. Acad. scient. Paris, 284 (1977), A-167–A-170

[8] Giusli M., Henry J.-P.-G., “Minorations de nombre de Milnor”, Bull. Soc. Math. France, 108 (1980), 17–45 | MR

[9] Grauert H., Kerner H., “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153:3 (1964), 236–260 | DOI | MR | Zbl

[10] Greuel G.-M., “Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214:2 (1975), 235–266 | DOI | MR | Zbl

[11] Greuel G.-M., Hamm H. A., “Invarianten quasihomogener vollständiger Durchschnitte”, Invent. Math., 49:1 (1978), 67–86 | DOI | MR | Zbl

[12] Greuel G.-M., “Dualität in der lokalen Kohomologie isolierter Singularitäten”, Math. Ann., 250:2 (1980), 157–173 | DOI | MR | Zbl

[13] Grothendieck A., Local Cohomology, V. 41, Lecture Notes in Math., Springer-Verlag, 1967 | MR | Zbl

[14] Khamm G. A., “Rod $\chi_y$ kvaziodnorodnykh polnykh peresechenii”, Funkts. analiz, 11:1 (1977), 87–88 | Zbl

[15] Hartshorne R., Residues and Duality, V. 20, Lecture Notes in Math, Springer-Verlag, 1966 | MR | Zbl

[16] Kas A., Schlessinger M., “On the versal deformation of a complex space with isolated singularity”, Math. Ann., 196:1 (1972), 23–29 | DOI | MR | Zbl

[17] Kunz E., “Residuen von Differentialformen auf Cohen-Macaulay Varitäten”, Math. Z., 152 (1977), 165–189 | DOI | MR | Zbl

[18] Leng S., Algebra, Mir, M., 1968

[19] Naruki I., “Some Remarks on isolated singularity and their application to algebraic fnanifolds”, Publ. RIMS, Kyoto Univ., 13 (1977), 17–46 | DOI | MR | Zbl

[20] Palamodov V. P., “Moduli i versalnye deformatsii kompleksnykh prostranstv”, DAN SSSR, 230:1 (1976), 34–37 | MR | Zbl

[21] Palamodov V. P., “Deformatsii kompleksnykh prostranstv”, UMN, XXXI:3 (1976), 129–194 | MR

[22] Palamodov V. P., “Moduli in versal deformations of complex spaces”, Variétés Analytiques Compactes, V. 683, Lecture Notes in Math., Springer-Verlag, 1979 | MR

[23] Saito Q., “Quasihomogene isolierte Singularitäten von Hyperflachen”, Invent. Math., 14 (1971), 123–142 | DOI | MR | Zbl

[24] Saito K., “Einfach-elleptische Singularitäten”, Invent. Math., 23 (1974), 289–325 | DOI | MR | Zbl

[25] Schaps M., “Deformations of Cohen-Macaulay schemes of codimension 2”, Amer. J. Math., 99:4 (1977), 669–685 | DOI | MR | Zbl

[26] Scheja G., Wiebe H., “Über Derivationen von lokalen analytischen Algebren”, Symp. Math., Roma, XI, 1973, 161–192 | MR

[27] Scherbak O. P., “Usloviya suschestvovaniya nevyrozhdennogo otobrazheniya s zadannym nositelem”, Funkts. analiz, 13:3 (1979), 95 | MR | Zbl

[28] Schlessinger M., “On rigid singularities”, Rice Univ. Studies, 50:1 (1973), 147–162 | MR

[29] Cepp Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[30] Siu Y. T., Trautmann G., Gap-sheaves and extension of coherent analytic Subsheaves, V. 172, Lecture Notes in Math., Springer-Verlag, 1971 | MR

[31] Tessier B., “The hunting of invariants in the geometry of discriminants”, Real and Complex Singularities, eds. P. Holm, Sijthoff-Noordhoff Publ., Alphen aan den Rijn, Oslo, 1977 | MR

[32] Tyurina G. N., “Lokalno poluuniversalnye ploskie deformatsii izolirovannykh osobennostei kompleksnykh prostranstv”, Izv. AN SSSR, ser. matem., 33:5 (1969), 1026–1058 | MR | Zbl

[33] Yoshinaga E., Suzuki M., “Normal forms of non-degenerate quasihomogeneous functions with inner modality $\leqslant 4$”, Invent. Math., 55:1 (1979), 185–206 | DOI | MR