Graded Lie algebras with zero component equal to a~sum of commuting ideals
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 511-516
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers transitive irreducible 1-graded Lie algebras $L=\bigoplus_{i\geqslant-1}L_i$, $L_1=0$, over an algebraically closed field $K$ of characteristic $p\geqslant0$, $p\ne2$. We prove that if $L_0=G_1+\dots+G_s$, $G_i\ne Z(L_0)$, is the decomposition of $L_0$ and the ideals of $G_i$ commute, then $s=1$ or $s=2$. In the latter case $L$ is isomorphic to one of the algebras $A_n$, $A^z_{n_0p-1}$ or $\widetilde{\mathfrak{gl}}(n_0p)=\mathfrak{gl}(n_0p)/\langle1\rangle$.
.
Bibliography: 7 titles.
@article{SM_1983_44_4_a8,
author = {M. I. Kuznetsov},
title = {Graded {Lie} algebras with zero component equal to a~sum of commuting ideals},
journal = {Sbornik. Mathematics},
pages = {511--516},
publisher = {mathdoc},
volume = {44},
number = {4},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a8/}
}
M. I. Kuznetsov. Graded Lie algebras with zero component equal to a~sum of commuting ideals. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 511-516. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a8/