Graded Lie algebras with zero component equal to a sum of commuting ideals
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 511-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers transitive irreducible 1-graded Lie algebras $L=\bigoplus_{i\geqslant-1}L_i$, $L_1=0$, over an algebraically closed field $K$ of characteristic $p\geqslant0$, $p\ne2$. We prove that if $L_0=G_1+\dots+G_s$, $G_i\ne Z(L_0)$, is the decomposition of $L_0$ and the ideals of $G_i$ commute, then $s=1$ or $s=2$. In the latter case $L$ is isomorphic to one of the algebras $A_n$, $A^z_{n_0p-1}$ or $\widetilde{\mathfrak{gl}}(n_0p)=\mathfrak{gl}(n_0p)/\langle1\rangle$. . Bibliography: 7 titles.
@article{SM_1983_44_4_a8,
     author = {M. I. Kuznetsov},
     title = {Graded {Lie} algebras with zero component equal to a~sum of commuting ideals},
     journal = {Sbornik. Mathematics},
     pages = {511--516},
     year = {1983},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a8/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
TI  - Graded Lie algebras with zero component equal to a sum of commuting ideals
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 511
EP  - 516
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a8/
LA  - en
ID  - SM_1983_44_4_a8
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%T Graded Lie algebras with zero component equal to a sum of commuting ideals
%J Sbornik. Mathematics
%D 1983
%P 511-516
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1983_44_4_a8/
%G en
%F SM_1983_44_4_a8
M. I. Kuznetsov. Graded Lie algebras with zero component equal to a sum of commuting ideals. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 511-516. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a8/

[1] Kats V. G., “O klassifikatsii prostykh algebr Li nad polem s nenulevoi kharakteristikoi”, Izv. AN SSSR, ser. matem., 34 (1970), 385–408 | Zbl

[2] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR, ser. matem., 33 (1969), 251–322 | MR | Zbl

[3] Kostrikin A. I., “Neprivodimye graduirovannye algebry Li s komponentoi $L_0 \cong W_1$”, Matem. zametki uralskogo un-ta, 7, no. 3, Sverdlovsk, 1970, 92–103 | MR | Zbl

[4] Kuznetsov M. I., “Algebry Li s podalgebroi korazmernosti $p$”, Izv. AN SSSR, ser. matem., 40 (1976), 1224–1247 | Zbl

[5] Krylyuk Ya. S., “Moduli nad algebrami Li, dopuskayuschie pervoe kartanovskoe prodolzhenie”, UMN, 34:3 (1979), 203–204 | MR | Zbl

[6] Singer I. M., Sternberg S., “The infinite groups of Lie and Cartan”, J. analyse math., 15 (1965), 1–114 | DOI | MR | Zbl

[7] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl