Uniqueness and stability of the solution of a~problem of geometry in the large
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 483-490
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers the problem of determining a convex surface from the area $F(n)$ of its orthogonal projection on any plane $(x,n)=0$ and the area $S(n)$ of the portion of the surface illuminated in the direction $n$. It is proved that in a certain class a convex surface is uniquely defined (up to translation) by a function $\varphi(n)=2aF(n)+bS(n)$ for $a\ne0$, $b\ne0$, $a+b\ne0$. Moreover, the surface is analytic if and only if $\varphi(n)$ is an analytic function on the unit sphere. The surface is shown to be stable, and a quantitative estimate related to stability is given.
Bibliography: 6 titles.
@article{SM_1983_44_4_a5,
author = {Yu. E. Anikonov and V. N. Stepanov},
title = {Uniqueness and stability of the solution of a~problem of geometry in the large},
journal = {Sbornik. Mathematics},
pages = {483--490},
publisher = {mathdoc},
volume = {44},
number = {4},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a5/}
}
TY - JOUR AU - Yu. E. Anikonov AU - V. N. Stepanov TI - Uniqueness and stability of the solution of a~problem of geometry in the large JO - Sbornik. Mathematics PY - 1983 SP - 483 EP - 490 VL - 44 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a5/ LA - en ID - SM_1983_44_4_a5 ER -
Yu. E. Anikonov; V. N. Stepanov. Uniqueness and stability of the solution of a~problem of geometry in the large. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a5/