The problem of the correctness of Schur's theorem
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 471-481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the problem of the correctness of Schur's theorem for an $n$-dimensional Riemannian space $V_n$. We show that in the general case it is not correct, that is, it may happen that, for an arbitrarily small variation of the curvature of the space due to rotations of two-dimensional elements of area at points of a given domain, the variation of the curvature from point to point of the domain is arbitrarily large. Bibliography: 8 titles.
@article{SM_1983_44_4_a4,
     author = {I. V. Gribkov},
     title = {The problem of the correctness of {Schur's} theorem},
     journal = {Sbornik. Mathematics},
     pages = {471--481},
     year = {1983},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/}
}
TY  - JOUR
AU  - I. V. Gribkov
TI  - The problem of the correctness of Schur's theorem
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 471
EP  - 481
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/
LA  - en
ID  - SM_1983_44_4_a4
ER  - 
%0 Journal Article
%A I. V. Gribkov
%T The problem of the correctness of Schur's theorem
%J Sbornik. Mathematics
%D 1983
%P 471-481
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/
%G en
%F SM_1983_44_4_a4
I. V. Gribkov. The problem of the correctness of Schur's theorem. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 471-481. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/

[1] Rashevskii P. K., Romanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR

[2] Stanilov Gr., “Generalization of Schur's theorem of Kahler and nearly Kahler manifolds”, Dokl. Bolg. AN, 29:12 (1976), 1713–1715 | MR | Zbl

[3] Rizza G. B., “Schur-like theorems”, Simp. geometrie şi analizǎ globalǎ (G. Ţiţeica şi D. Pompeiu, Bucureşti, 1973), Acad. RSR, Bucureşti, 1976, 136–138 | MR

[4] Susumi Tsuchiya, Minoru Kobayashi, “Some conditions for constancy of the holomorphic sectional curvature”, Kodai Math. Semin. Repts., 27:3 (1976), 379–384 | DOI | MR

[5] Stanilov Gr., “Obobschennye kharakteristiki nekotorykh klassicheskikh rimanovykh mnogoobrazii”, Izv. VUZov, Matematika, 1976, no. 12, 77–81 | MR | Zbl

[6] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[7] Brandt I. S., “Nekotorye svoistva poverkhnostei s medlenno menyayuscheisya otritsatelnoi vneshnei kriviznoi v rimanovom prostranstve”, Matem. sb., 83 (125) (1970), 313–324 | MR | Zbl

[8] Gribkov I. V., “Postroenie nekotorykh regulyarnykh reshenii uravneniya “sinus-Gordon” s pomoschyu poverkhnostei postoyannoi otritsatelnoi krivizny”, Vestnik MGU, Matematika, mekhanika, 1977, no. 4, 78–83 | MR | Zbl