The problem of the correctness of Schur's theorem
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 471-481

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the problem of the correctness of Schur's theorem for an $n$-dimensional Riemannian space $V_n$. We show that in the general case it is not correct, that is, it may happen that, for an arbitrarily small variation of the curvature of the space due to rotations of two-dimensional elements of area at points of a given domain, the variation of the curvature from point to point of the domain is arbitrarily large. Bibliography: 8 titles.
@article{SM_1983_44_4_a4,
     author = {I. V. Gribkov},
     title = {The problem of the correctness of {Schur's} theorem},
     journal = {Sbornik. Mathematics},
     pages = {471--481},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/}
}
TY  - JOUR
AU  - I. V. Gribkov
TI  - The problem of the correctness of Schur's theorem
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 471
EP  - 481
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/
LA  - en
ID  - SM_1983_44_4_a4
ER  - 
%0 Journal Article
%A I. V. Gribkov
%T The problem of the correctness of Schur's theorem
%J Sbornik. Mathematics
%D 1983
%P 471-481
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/
%G en
%F SM_1983_44_4_a4
I. V. Gribkov. The problem of the correctness of Schur's theorem. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 471-481. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a4/