Triangular imbeddings of regular graphs
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 459-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that, among regular graphs with $n$ vertices of degree $\rho$, a graph triangulating an orientable surface of genus $\gamma=1+\frac{\rho-6}{12}n$ exists if and only if $(\rho-6)n\equiv0$ $(\operatorname{mod}12)$. A triangular imbedding for all such graphs is obtained with the help of the technique of flow graphs. Figures: 8. Bibliography: 5 titles.
@article{SM_1983_44_4_a3,
     author = {A. G. Vantsyan},
     title = {Triangular imbeddings of regular graphs},
     journal = {Sbornik. Mathematics},
     pages = {459--469},
     year = {1983},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/}
}
TY  - JOUR
AU  - A. G. Vantsyan
TI  - Triangular imbeddings of regular graphs
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 459
EP  - 469
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/
LA  - en
ID  - SM_1983_44_4_a3
ER  - 
%0 Journal Article
%A A. G. Vantsyan
%T Triangular imbeddings of regular graphs
%J Sbornik. Mathematics
%D 1983
%P 459-469
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/
%G en
%F SM_1983_44_4_a3
A. G. Vantsyan. Triangular imbeddings of regular graphs. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 459-469. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/

[1] Ringel G., Teorema o raskraske kart, Mir, M., 1977 | MR | Zbl

[2] Pengelley D. L, Jungerman M., “Index four orientable embeddings and case zero of the Heawood conjecture”, J. Combin. Theory, B26 (1979), 131–144 | MR

[3] Stahl S., “The embeddings of a graph – a survey”, J. Graph Theory, 2 (1978), 275–298 | DOI | MR | Zbl

[4] White A. T., “Block designs and graph imbeddings”, J. Combin. Theory, B25 (1978), 166–183 | MR

[5] Ringel G., “Non-existence of graph embeddings”, Lect. Notes Math., 642 (1978), 465–476 | DOI | MR | Zbl