Triangular imbeddings of regular graphs
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 459-469
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that, among regular graphs with $n$ vertices of degree $\rho$, a graph triangulating an orientable surface of genus $\gamma=1+\frac{\rho-6}{12}n$ exists if and only if $(\rho-6)n\equiv0$ $(\operatorname{mod}12)$. A triangular imbedding for all such graphs is obtained with the help of the technique of flow graphs. Figures: 8. Bibliography: 5 titles.
@article{SM_1983_44_4_a3,
author = {A. G. Vantsyan},
title = {Triangular imbeddings of regular graphs},
journal = {Sbornik. Mathematics},
pages = {459--469},
year = {1983},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/}
}
A. G. Vantsyan. Triangular imbeddings of regular graphs. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 459-469. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/
[1] Ringel G., Teorema o raskraske kart, Mir, M., 1977 | MR | Zbl
[2] Pengelley D. L, Jungerman M., “Index four orientable embeddings and case zero of the Heawood conjecture”, J. Combin. Theory, B26 (1979), 131–144 | MR
[3] Stahl S., “The embeddings of a graph – a survey”, J. Graph Theory, 2 (1978), 275–298 | DOI | MR | Zbl
[4] White A. T., “Block designs and graph imbeddings”, J. Combin. Theory, B25 (1978), 166–183 | MR
[5] Ringel G., “Non-existence of graph embeddings”, Lect. Notes Math., 642 (1978), 465–476 | DOI | MR | Zbl