Triangular imbeddings of regular graphs
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 459-469
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that, among regular graphs with $n$ vertices of degree $\rho$, a graph triangulating an orientable surface of genus $\gamma=1+\frac{\rho-6}{12}n$ exists if and only if $(\rho-6)n\equiv0$ $(\operatorname{mod}12)$. A triangular imbedding for all such graphs is obtained with the help of the technique of flow graphs.
Figures: 8.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1983_44_4_a3,
     author = {A. G. Vantsyan},
     title = {Triangular imbeddings of regular graphs},
     journal = {Sbornik. Mathematics},
     pages = {459--469},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/}
}
                      
                      
                    A. G. Vantsyan. Triangular imbeddings of regular graphs. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 459-469. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a3/
