On limit sets of trajectories of dynamical systems of gradient type
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 447-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of limit sets of the solutions of systems of differential equations having the form $\frac{dx}{dt}=-\nabla U(x)$, $x\in\mathbf R^n$, is studied. It is proved that any set of stationary points admissible for a general class of dynamical systems in $\mathbf R^n$, can be such a limit set. Sufficient conditions for the stabilization of the solutions to a stationary one are obtained for systems close to systems of gradient type. Bibliography: 8 titles.
@article{SM_1983_44_4_a2,
     author = {M. V. Fokin},
     title = {On limit sets of trajectories of dynamical systems of gradient type},
     journal = {Sbornik. Mathematics},
     pages = {447--458},
     year = {1983},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a2/}
}
TY  - JOUR
AU  - M. V. Fokin
TI  - On limit sets of trajectories of dynamical systems of gradient type
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 447
EP  - 458
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a2/
LA  - en
ID  - SM_1983_44_4_a2
ER  - 
%0 Journal Article
%A M. V. Fokin
%T On limit sets of trajectories of dynamical systems of gradient type
%J Sbornik. Mathematics
%D 1983
%P 447-458
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1983_44_4_a2/
%G en
%F SM_1983_44_4_a2
M. V. Fokin. On limit sets of trajectories of dynamical systems of gradient type. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 447-458. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a2/

[1] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, 2-e izd. pererab., Gostekhizdat, M., L., 1949

[2] Vinograd R. E., “O predelnom povedenii neogranichennoi integralnoi krivoi”, Matematika, t. V, Uchenye zapiski MGU, 155, 1952, 94–136 | MR

[3] Nemytskii V. V., “Struktura odnomernykh predelnykh integralnykh mnogoobrazii na ploskosti i v prostranstve”, Vestnik MGU, 10 (1948), 49–61

[4] Olkhovskii Yu. G., “O primenenii neravenstva Loyasevicha k teorii relaksatsionnykh protsessov”, Sib. matem. zh., 14:5 (1973), 1134–1138

[5] Lojasiewicz S., “Une propriété topologique des sous-ensembles analitiques réels”, Les Equations aux Dérivées Partielles (Colloques International du Centre National de la Recherche Scientifique), no. 117, Paris, 1963, 87–90 | MR

[6] Zelenyak T. I., “O stabilizatsii reshenii kraevykh zadach dlya parabolicheskogo uravneniya vtorogo poryadka s prostranstvennoi peremennoi”, Diff. uravneniya, 4:1 (1968), 34–45 | Zbl

[7] Belonosov V. S, Zelenyak T. I., Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, NGU, Novosibirsk, 1975 | MR

[8] Fokin M. V., “Suschestvovanie funktsionalov Lyapunova i stabilizatsiya reshenii dinamicheskikh i parabolicheskikh sistem pri $t \to \infty$”, Matematicheskie problemy khimii, ch. I, Novosibirsk, 1975, 120–123