Projections of algebraic varieties
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 535-544
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper gives conditions which are necessary and sufficient in order that a generic projection of a projective variety not have singularities other than those coming from the singularities of the original variety. In particular it turns out that this is possible only for varieties of large codimension. Bibliography: 5 titles.
@article{SM_1983_44_4_a11,
author = {F. L. Zak},
title = {Projections of algebraic varieties},
journal = {Sbornik. Mathematics},
pages = {535--544},
year = {1983},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a11/}
}
F. L. Zak. Projections of algebraic varieties. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 535-544. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a11/
[1] Fulton W., Hansen J., “A connectedness theorem for projective varieties with applications to intersections and singularities of mappings”, Ann. Math., 110 (1979), 159–166 | DOI | MR | Zbl
[2] Hartshorne R., “Varieties of small codimension in projective space”, Bull. Amer. Math. Soc., 80 (1974), 1017–1032 | DOI | MR | Zbl
[3] Johnson K. W., “Immersion and embedoling of projective varieties”, Acta Math., 140 (1978), 49–74 | DOI | MR | Zbl
[4] Kleiman S. L., “Chislennaya teoriya osobennostei”, UMN, 35:6 (1980), 69–148 | MR | Zbl