Projections of algebraic varieties
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 535-544 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives conditions which are necessary and sufficient in order that a generic projection of a projective variety not have singularities other than those coming from the singularities of the original variety. In particular it turns out that this is possible only for varieties of large codimension. Bibliography: 5 titles.
@article{SM_1983_44_4_a11,
     author = {F. L. Zak},
     title = {Projections of algebraic varieties},
     journal = {Sbornik. Mathematics},
     pages = {535--544},
     year = {1983},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a11/}
}
TY  - JOUR
AU  - F. L. Zak
TI  - Projections of algebraic varieties
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 535
EP  - 544
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a11/
LA  - en
ID  - SM_1983_44_4_a11
ER  - 
%0 Journal Article
%A F. L. Zak
%T Projections of algebraic varieties
%J Sbornik. Mathematics
%D 1983
%P 535-544
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1983_44_4_a11/
%G en
%F SM_1983_44_4_a11
F. L. Zak. Projections of algebraic varieties. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 535-544. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a11/

[1] Fulton W., Hansen J., “A connectedness theorem for projective varieties with applications to intersections and singularities of mappings”, Ann. Math., 110 (1979), 159–166 | DOI | MR | Zbl

[2] Hartshorne R., “Varieties of small codimension in projective space”, Bull. Amer. Math. Soc., 80 (1974), 1017–1032 | DOI | MR | Zbl

[3] Johnson K. W., “Immersion and embedoling of projective varieties”, Acta Math., 140 (1978), 49–74 | DOI | MR | Zbl

[4] Kleiman S. L., “Chislennaya teoriya osobennostei”, UMN, 35:6 (1980), 69–148 | MR | Zbl