Symmetric stochastic differential equations with nonsmooth coefficients
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 527-534

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a solution of a symmetric stochastic equation $$ X_t=x+\int^t_0\sigma(s,X_s)\circ dB_s+\int^t_0b(s,X_s)\,ds,\qquad t\geqslant0, $$ is generalized to the case when the coefficient $\sigma=\sigma(t,x)$, $(t,x)\in\mathbf R_+\times\mathbf R$, is continuous and continuously differentiable with respect to $t$, i.e., $\sigma\in C^{1,0}$. Here $B_t$, $t\geqslant0$, is a one-dimensional Brownian motion, and the stochastic integral is understood in the symmetric sense (in the sense of Stratonovich). Sufficient conditions are obtained for the existence and uniqueness of a solution, and the stability of a solution under perturbations of the coefficients is investigated. Bibliography: 14 titles.
@article{SM_1983_44_4_a10,
     author = {V. Mackevi\v{c}ius},
     title = {Symmetric stochastic differential equations with nonsmooth coefficients},
     journal = {Sbornik. Mathematics},
     pages = {527--534},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a10/}
}
TY  - JOUR
AU  - V. Mackevičius
TI  - Symmetric stochastic differential equations with nonsmooth coefficients
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 527
EP  - 534
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a10/
LA  - en
ID  - SM_1983_44_4_a10
ER  - 
%0 Journal Article
%A V. Mackevičius
%T Symmetric stochastic differential equations with nonsmooth coefficients
%J Sbornik. Mathematics
%D 1983
%P 527-534
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_4_a10/
%G en
%F SM_1983_44_4_a10
V. Mackevičius. Symmetric stochastic differential equations with nonsmooth coefficients. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 527-534. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a10/