Topologies on a~ring of polynomials, and a~topological analogue of the Hilbert basis theorem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 417-430
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A topology is constructed on a ring of polynomials that extends the topology on the coefficient ring and the topology on the set of variables. A topological analogue of the Hilbert basis theorem is proved.
Bibliography: 4 titles.
			
            
            
            
          
        
      @article{SM_1983_44_4_a0,
     author = {V. I. Arnautov and A. V. Mikhalev},
     title = {Topologies on a~ring of polynomials, and a~topological analogue of the {Hilbert} basis theorem},
     journal = {Sbornik. Mathematics},
     pages = {417--430},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_4_a0/}
}
                      
                      
                    TY - JOUR AU - V. I. Arnautov AU - A. V. Mikhalev TI - Topologies on a~ring of polynomials, and a~topological analogue of the Hilbert basis theorem JO - Sbornik. Mathematics PY - 1983 SP - 417 EP - 430 VL - 44 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_44_4_a0/ LA - en ID - SM_1983_44_4_a0 ER -
V. I. Arnautov; A. V. Mikhalev. Topologies on a~ring of polynomials, and a~topological analogue of the Hilbert basis theorem. Sbornik. Mathematics, Tome 44 (1983) no. 4, pp. 417-430. http://geodesic.mathdoc.fr/item/SM_1983_44_4_a0/
