Sufficient sets in a~certain space of entire functions
Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 389-400

Voir la notice de l'article provenant de la source Math-Net.Ru

For any trigonometrically convex function $h(\varphi)$ an entire function $L(z)$ is constructed, satisfying the relation $$ \ln|L(re^{i\varphi})|=h(\varphi)r+O(r^{1/2}\ln r),\qquad re^{i\varphi}\notin\Omega(a_n), $$ where the $a_n$ are the zeros of $L(z)$ and $\Omega(a_n)=\{z:|z-a_n|\leqslant1\}$. The set of zeros of such a function is sufficient in the space of entire functions $F(z)$ satisfying $$ \sup_{r,\varphi}\frac{\ln|F(re^{i\varphi})|}{h(\varphi)r-r^{q+\varepsilon}}\infty $$ for some $\varepsilon>0$, where $q\in(1/2,1)$ is a parameter of the space. Bibliography: 5 titles.
@article{SM_1983_44_3_a8,
     author = {R. S. Yulmukhametov},
     title = {Sufficient sets in a~certain space of entire functions},
     journal = {Sbornik. Mathematics},
     pages = {389--400},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_3_a8/}
}
TY  - JOUR
AU  - R. S. Yulmukhametov
TI  - Sufficient sets in a~certain space of entire functions
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 389
EP  - 400
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_3_a8/
LA  - en
ID  - SM_1983_44_3_a8
ER  - 
%0 Journal Article
%A R. S. Yulmukhametov
%T Sufficient sets in a~certain space of entire functions
%J Sbornik. Mathematics
%D 1983
%P 389-400
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_3_a8/
%G en
%F SM_1983_44_3_a8
R. S. Yulmukhametov. Sufficient sets in a~certain space of entire functions. Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 389-400. http://geodesic.mathdoc.fr/item/SM_1983_44_3_a8/