On a certain stochastic quasilinear hyperbolic equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 363-388
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author considers the first boundary value problem for the equation 
$$
\frac{\partial^2u(t,x)}{\partial t^2}+k\,\frac{\partial u}{\partial t}-\Delta u+|u|^\rho u=\frac{\partial w(t,x)}{\partial t},\qquad t>0, \quad x\in\mathscr O\Subset\mathbf R^n,
$$
where $k\geqslant0$, $\rho>0$, and $w(t)$ is a Wiener process in the space $L^2(\mathscr O)$. The initial values are assumed random and independent of the process $w(t)$. The existence of a space-time statistical solution is proved and (under a certain restriction on $\rho$) the existence of a strong solution. A steady state space-time statistical solution is constructed for $k>0$.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1983_44_3_a7,
     author = {D. A. Khrychev},
     title = {On a certain stochastic quasilinear hyperbolic equation},
     journal = {Sbornik. Mathematics},
     pages = {363--388},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_3_a7/}
}
                      
                      
                    D. A. Khrychev. On a certain stochastic quasilinear hyperbolic equation. Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 363-388. http://geodesic.mathdoc.fr/item/SM_1983_44_3_a7/
