Multiplace generalizations of the Seifert form of a~classical knot
Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 335-361

Voir la notice de l'article provenant de la source Math-Net.Ru

On the fundamental group $\pi$ of a Seifert surface$A$ of a knot in the three-dimensional sphere, the author constructs, using the same scheme as for the Seifert form, a form $\pi^n\to\mathbf Z$, for $n=3,4,\dots$ . The role of linking coefficient is played here by suitably chosen integral representatives of Milnor residues. It is shown that the form $\pi^3\to\mathbf Z$ can obstruct invertibility, ribbonness and two-sided null-cobordancy of the knot $\partial A$ (even when there is no obstruction by the Seifert form itself). Figures: 5. Bibliography: 17 titles.
@article{SM_1983_44_3_a6,
     author = {V. G. Turaev},
     title = {Multiplace generalizations of the {Seifert} form of a~classical knot},
     journal = {Sbornik. Mathematics},
     pages = {335--361},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_3_a6/}
}
TY  - JOUR
AU  - V. G. Turaev
TI  - Multiplace generalizations of the Seifert form of a~classical knot
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 335
EP  - 361
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_3_a6/
LA  - en
ID  - SM_1983_44_3_a6
ER  - 
%0 Journal Article
%A V. G. Turaev
%T Multiplace generalizations of the Seifert form of a~classical knot
%J Sbornik. Mathematics
%D 1983
%P 335-361
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_3_a6/
%G en
%F SM_1983_44_3_a6
V. G. Turaev. Multiplace generalizations of the Seifert form of a~classical knot. Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 335-361. http://geodesic.mathdoc.fr/item/SM_1983_44_3_a6/