Generators of $S^1$-bordism
Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 325-334

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper generators are found for the rings $U^{S^1}_*$ (the unitary $S^1$-bordism ring) and $U_*(S^1,\{\mathbf Z_s\})$ (the unitary bordism ring with actions of the group $S^1$ without fixed points). The generators found are $S^1$-manifolds of the form $(S^3)^k\times\mathbf CP^n/(S^1)^k$. By an obvious construction the ring $U^{S^1}_*$ allows one to establish a relation between numerical invariants of manifolds with unitary actions of $S^1$ and the set of fixed points, without using a theorem of the type of an integrality theorem. In particular, we obtain a new proof of the Atiyah–Hirzebruch formula for the generalized Todd genus of $S^1$-manifolds. Bibliography: 9 titles.
@article{SM_1983_44_3_a5,
     author = {O. R. Musin},
     title = {Generators of $S^1$-bordism},
     journal = {Sbornik. Mathematics},
     pages = {325--334},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_3_a5/}
}
TY  - JOUR
AU  - O. R. Musin
TI  - Generators of $S^1$-bordism
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 325
EP  - 334
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_3_a5/
LA  - en
ID  - SM_1983_44_3_a5
ER  - 
%0 Journal Article
%A O. R. Musin
%T Generators of $S^1$-bordism
%J Sbornik. Mathematics
%D 1983
%P 325-334
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_3_a5/
%G en
%F SM_1983_44_3_a5
O. R. Musin. Generators of $S^1$-bordism. Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 325-334. http://geodesic.mathdoc.fr/item/SM_1983_44_3_a5/