Generators of $S^1$-bordism
Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 325-334
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper generators are found for the rings $U^{S^1}_*$ (the unitary $S^1$-bordism ring) and $U_*(S^1,\{\mathbf Z_s\})$ (the unitary bordism ring with actions of the group $S^1$ without fixed points). The generators found are $S^1$-manifolds of the form $(S^3)^k\times\mathbf CP^n/(S^1)^k$. By an obvious construction the ring $U^{S^1}_*$ allows one to establish a relation between numerical invariants of manifolds with unitary actions of $S^1$ and the set of fixed points, without using a theorem of the type of an integrality theorem. In particular, we obtain a new proof of the Atiyah–Hirzebruch formula for the generalized Todd genus of $S^1$-manifolds.
Bibliography: 9 titles.
@article{SM_1983_44_3_a5,
author = {O. R. Musin},
title = {Generators of $S^1$-bordism},
journal = {Sbornik. Mathematics},
pages = {325--334},
publisher = {mathdoc},
volume = {44},
number = {3},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_44_3_a5/}
}
O. R. Musin. Generators of $S^1$-bordism. Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 325-334. http://geodesic.mathdoc.fr/item/SM_1983_44_3_a5/