Lacunary Finsler spaces
Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 279-282

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider motions in Finsler spaces. We prove the following theorem. Theorem. {\it The maximal order of groups of motions $G_r$ in Finsler spaces $F_{n,\dot x}$ with nonzero tensor $F_{\cdot \,i\,\cdot\,j\,\cdot\,k}$ is exactly equal to $\frac{n(n-1)}2+2$.} Bibliography: 4 titles.
@article{SM_1983_44_3_a2,
     author = {A. I. Egorov},
     title = {Lacunary {Finsler} spaces},
     journal = {Sbornik. Mathematics},
     pages = {279--282},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/}
}
TY  - JOUR
AU  - A. I. Egorov
TI  - Lacunary Finsler spaces
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 279
EP  - 282
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/
LA  - en
ID  - SM_1983_44_3_a2
ER  - 
%0 Journal Article
%A A. I. Egorov
%T Lacunary Finsler spaces
%J Sbornik. Mathematics
%D 1983
%P 279-282
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/
%G en
%F SM_1983_44_3_a2
A. I. Egorov. Lacunary Finsler spaces. Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 279-282. http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/