Lacunary Finsler spaces
Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 279-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider motions in Finsler spaces. We prove the following theorem. Theorem. {\it The maximal order of groups of motions $G_r$ in Finsler spaces $F_{n,\dot x}$ with nonzero tensor $F_{\cdot \,i\,\cdot\,j\,\cdot\,k}$ is exactly equal to $\frac{n(n-1)}2+2$.} Bibliography: 4 titles.
@article{SM_1983_44_3_a2,
     author = {A. I. Egorov},
     title = {Lacunary {Finsler} spaces},
     journal = {Sbornik. Mathematics},
     pages = {279--282},
     year = {1983},
     volume = {44},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/}
}
TY  - JOUR
AU  - A. I. Egorov
TI  - Lacunary Finsler spaces
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 279
EP  - 282
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/
LA  - en
ID  - SM_1983_44_3_a2
ER  - 
%0 Journal Article
%A A. I. Egorov
%T Lacunary Finsler spaces
%J Sbornik. Mathematics
%D 1983
%P 279-282
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/
%G en
%F SM_1983_44_3_a2
A. I. Egorov. Lacunary Finsler spaces. Sbornik. Mathematics, Tome 44 (1983) no. 3, pp. 279-282. http://geodesic.mathdoc.fr/item/SM_1983_44_3_a2/

[1] Egorov A. I., “O dvizheniyakh v prostranstvakh obschei affinnoi svyaznosti”, DAN SSSR, 196:6 (1971), 1266–1269 | MR | Zbl

[2] Egorov I. P., “O dvizheniyakh i probleme lakunarnosti v differentsialno-geometricheskikh prostranstvakh”, Tezisy dokl. V Vsesoyuznoi geometr, konferentsii, Samarkand, 1972, 63

[3] Laptev B. L., “Proizvodnaya Li dlya ob'ektov, yavlyayuschikhsya funktsiyami tochki i napravleniya”, Izv. Fiz.-matem. ob-va, 10, no. 3, Kazan, 1938, 3–38

[4] Ki Chao-Hao., “On Finsler spaces admitting a group of motions of the greatest order”, Kesyue Tszilu. Sci. Rec., 1:4 (1957), 215–218 | MR | Zbl