On a connection between Hughes' conjecture and relations in finite groups of prime exponent
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 227-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under the assumption that the ideal of relations of a free 3-generator group of period $p$ does not coincide modulo $p$ with the $(p-1)$-Engel ideal it is proved that there exist $p$-groups $P$ of nilpotence degree $2p-1$ in which the index of the Hughes subgroup $H_p(P)$ is $p^2$ (Theorem 1). The author also finds that Macdonald's result on $p$-groups of class $2p-2$ is best possible (at least for $p=5,7,11$). The proof is based on direct computations almost the same as in work of A. I. Kostrikin dating from 1957; it uses properties of the coefficients in the Baker–Hausdorff formula. An automorphism $\varphi$ of order $p$ of the group $G$ is called splitting if $xx^\varphi x^{\varphi\,2}\dots x^{\varphi\,p-1}=1$ for all $x$ in $G$. It is easy to see that $G\ne H_p(G)$ if and only if $G=G_1\langle\varphi\rangle$, where $\varphi$ is a splitting automorphism of order $p$ of $G_1$. It is proved that if a finite $p$-group $P$ admits a splitting automorphism $\varphi$ of order $p$ and the nilpotency degree of $P\langle\varphi\rangle$ does not exceed $2p-2$, then $P$ is regular (Theorem 2). From Theorem 2 it is possible to deduce an independent proof of Hughes' conjecture for $p$-groups of class $2p-2$. On the basis of Theorem 1 the author constructs examples of $p$-groups admitting a splitting automorphism of order $p$ for which the associated Lie ring is not a $(p-1)$-Engel ring. Bibliography: 12 titles.
@article{SM_1983_44_2_a6,
     author = {E. I. Khukhro},
     title = {On a~connection between {Hughes'} conjecture and relations in finite groups of prime exponent},
     journal = {Sbornik. Mathematics},
     pages = {227--237},
     year = {1983},
     volume = {44},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a6/}
}
TY  - JOUR
AU  - E. I. Khukhro
TI  - On a connection between Hughes' conjecture and relations in finite groups of prime exponent
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 227
EP  - 237
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_2_a6/
LA  - en
ID  - SM_1983_44_2_a6
ER  - 
%0 Journal Article
%A E. I. Khukhro
%T On a connection between Hughes' conjecture and relations in finite groups of prime exponent
%J Sbornik. Mathematics
%D 1983
%P 227-237
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_44_2_a6/
%G en
%F SM_1983_44_2_a6
E. I. Khukhro. On a connection between Hughes' conjecture and relations in finite groups of prime exponent. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a6/

[1] Hughes D. R., Thompson J. G., “The $H$-problem and the structure of $H$-groups”, Pacific J. Math., 9 (1959), 1097–1101 | MR | Zbl

[2] Wall G. E., “On Hughes $H_p$-problem”, Proc. Int. Conf. Theory of Groups (Canberra, 1965), Gordon and Breach, New York, 1967, 357–362 | MR

[3] Macdonald I. D., “Solution of the Hughes problem for finite $p$-groups of class $2p-2$”, Proc. Amer. Math. Soc., 27:1 (1971), 39–42 | DOI | MR | Zbl

[4] Sanov I. N., “Ustanovlenie svyazi mezhdu periodicheskimi gruppami s periodom prostym chislom i koltsami Li”, Izv. AN SSSR, ser. matem., 16 (1952), 23–58 | MR | Zbl

[5] Kostrikin A. I., “O svyazi mezhdu periodicheskimi gruppami i koltsami Li”, Izv. AN SSSR, ser. matem., 21 (1957), 289–310 | MR

[6] Mangus V., Karras L., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR

[7] Wall G. E., “On the Lie ring of a group of prime exponent”, Proc. Second Int. Conf. Theory of Groups (Canberra, 1973), Lecture Notes in Math., No 372, Springer-Verlag, Berlin, London, 1974, 667–690 | MR

[8] Cannon J. J., “Some combinatorial and symbol manipulation programs in group theory”, Computational problems in abstract algebra (Oxford, 1967), Pergamon, New York, 1970, 199–203 | MR

[9] Khukhro E. I., “Nilpotentnost razreshimykh grupp, dopuskayuschikh rasscheplyayuschii avtomorfizm prostogo poryadka”, Algebra i logika, 19:1 (1980), 118–129 | MR | Zbl

[10] Higgins P. J., “Lie rings satisfying the Engel condition”, Proc. Cambridge Phil. Soc., 50:1 (1954), 8–15 | DOI | MR | Zbl

[11] Magnus W., “A connection between the Baker–Hausdorff formula and a problem of Burnside”, Ann. Math., 52:22 (1950), 111–126 | DOI | MR | Zbl

[12] Kholl M., Teoriya grupp, IL, M., 1962