On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 219-226

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the eigenvalue problem \begin{gather*} \Delta u-\mu^2\,\frac{\lambda^2-k^2}{\lambda^2-\beta^2}\,u=0,\qquad x\in D\subset\mathbf R^2, \\ \frac{\partial u}{\partial n}+i\,\frac k\lambda\,\frac{\partial u}{\partial \tau}=0, \qquad x\in\partial D, \end{gather*} which arises in studying the problem of normal oscillations of a rotating exponentially stratified liquid in a cylindrical container. It is shown that the spectrum is real and localized in the neighborhood of two limit points $\lambda=\pm\beta$, and the system of eigenvalues forms a two-fold Riesz basis in $L_2(D)$. Bibliography: 9 titles.
@article{SM_1983_44_2_a5,
     author = {S. A. Gabov},
     title = {On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid},
     journal = {Sbornik. Mathematics},
     pages = {219--226},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a5/}
}
TY  - JOUR
AU  - S. A. Gabov
TI  - On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 219
EP  - 226
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_2_a5/
LA  - en
ID  - SM_1983_44_2_a5
ER  - 
%0 Journal Article
%A S. A. Gabov
%T On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid
%J Sbornik. Mathematics
%D 1983
%P 219-226
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_2_a5/
%G en
%F SM_1983_44_2_a5
S. A. Gabov. On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 219-226. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a5/