On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 219-226
Voir la notice de l'article provenant de la source Math-Net.Ru
The author considers the eigenvalue problem
\begin{gather*}
\Delta u-\mu^2\,\frac{\lambda^2-k^2}{\lambda^2-\beta^2}\,u=0,\qquad x\in D\subset\mathbf R^2,
\\
\frac{\partial u}{\partial n}+i\,\frac k\lambda\,\frac{\partial u}{\partial \tau}=0, \qquad x\in\partial D,
\end{gather*}
which arises in studying the problem of normal oscillations of a rotating exponentially stratified liquid in a cylindrical container. It is shown that the spectrum is real and localized in the neighborhood of two limit points $\lambda=\pm\beta$, and the system of eigenvalues forms a two-fold Riesz basis in $L_2(D)$.
Bibliography: 9 titles.
@article{SM_1983_44_2_a5,
author = {S. A. Gabov},
title = {On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid},
journal = {Sbornik. Mathematics},
pages = {219--226},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a5/}
}
TY - JOUR AU - S. A. Gabov TI - On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid JO - Sbornik. Mathematics PY - 1983 SP - 219 EP - 226 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1983_44_2_a5/ LA - en ID - SM_1983_44_2_a5 ER -
S. A. Gabov. On the spectrum and bases of eigenfunctions of a~problem connected with oscillations of a~rotating fluid. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 219-226. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a5/