Projective nonfree modules over group rings of solvable groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 207-217
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a rather large class of commutative rings $k$ and locally solvable groups $G$ it is shown that there exist at least countably many nonisomorphic left ideals $P$ in the group algebra of $G$ such that $P\oplus kG\simeq kG+kG$.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_1983_44_2_a4,
     author = {V. A. Artamonov},
     title = {Projective nonfree modules over group rings of solvable groups},
     journal = {Sbornik. Mathematics},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a4/}
}
                      
                      
                    V. A. Artamonov. Projective nonfree modules over group rings of solvable groups. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 207-217. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a4/
