The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 149-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{a_{ij}(x)\}$ ($i,j=1,\dots,n$) be an elliptic matrix, where the $a_{ij}(x)$ are almost periodic functions in the sense of Bohr. In the case $n\geqslant3$ it is assumed that Bernstein's inequality holds. Problems of averaging families of elliptic $A_\varepsilon=a_{ij}(\varepsilon^{-1}x)D_iD_j$ and parabolic $L_\varepsilon=\frac\partial{\partial t}-a_{ij}(\varepsilon^{-1}x)D_iD_j$ operators are considered, and a criterion for pointwise and uniform stabilization is obtained for the solution of the Cauchy problem. A key role in these questions is played by a nonnegative solution of the equation $A^*p=D_iD_j(a_{ij}p)=0$. In particular it is proved that the equation has a unique (up to a multiplicative factor) solution in a class of almost periodic functions in the sense of Besicovitch. A stronger ergodic theorem (or uniqueness of “'stationary distribution”) is also proved: the equation $A^*f=0$ has a unique (up to a multiplicative factor) solution in the dual of the space of Bohr almost periodic functions. The case of periodic coefficients is also considered (when the equation is parabolic it is assumed to be time dependent), and averaging and stabilization theorems without Bernstein's inequality are proved. Bibliography: 17 titles.
@article{SM_1983_44_2_a1,
     author = {V. V. Zhikov and M. M. Sirazhudinov},
     title = {The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the {Cauchy} problem},
     journal = {Sbornik. Mathematics},
     pages = {149--166},
     year = {1983},
     volume = {44},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a1/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - M. M. Sirazhudinov
TI  - The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 149
EP  - 166
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_2_a1/
LA  - en
ID  - SM_1983_44_2_a1
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A M. M. Sirazhudinov
%T The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem
%J Sbornik. Mathematics
%D 1983
%P 149-166
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_44_2_a1/
%G en
%F SM_1983_44_2_a1
V. V. Zhikov; M. M. Sirazhudinov. The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 149-166. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a1/

[1] Bensoussan A., Lions J. L., Papanicalau G., Asymptotic analysis périodic structures, North-Holland Publ. Comp., 1978 | MR

[2] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 65–133 | MR | Zbl

[3] Nash J., “Continuety of solutions of parabolic equations”, Amer. J. Math., 80 (1958), 934–954 | DOI | MR

[4] Aleksandrov A. D., “Usloviya edinstvennosti i otsenki resheniya zadachi Dirikhle”, Vestnik LGU, 1963, no. 13, 5–30 | MR

[5] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR, ser. matem., 44 (1980), 161–175 | MR | Zbl

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[7] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975 | MR

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[9] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[10] Guschin A. K, Mikhailov V. P., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, Diff. uravneniya, 7:2 (1971), 297–311 | Zbl

[11] Guschin A. K., Mikhailov V. P., “O stabilizatsii resheniya zadachi Koshi dlya uravneniya s odnoi prostranstvennoi peremennoi”, Trudy matem. in-ta im. V. A. Steklova, SKhI (1971), 181–202 | Zbl

[12] Porper F. O., Eidelman S. D., “Teoremy o blizosti reshenii parabolicheskikh uravnenii i stabilizatsiya reshenii zadachi Koshi”, DAN SSSR, 221:1 (1975), 32–35 | MR | Zbl

[13] Bagirev L. A., Shubin M. A., “Stabilizatsiya reshenii zadachi Koshi dlya parabolicheskikh uravnenii s koeffitsientami, pochti-periodicheskimi po prostranstvennym peremennym”, Diff. uravneniya, 11:12 (1975), 2205–2209 | MR

[14] Zhikov V. V., “O stabilizatsii reshenii parabolicheskikh uravnenii”, Matem. sb., 104 (146) (1977), 597–616 | Zbl

[15] Zhikov V. V., “Kriterii potochechnoi stabilizatsii dlya parabolicheskikh uravnenii vtorogo poryadka s pochti-periodicheskimi koeffitsientami”, Matem. sb., 110 (152) (1979), 304–318 | MR | Zbl

[16] Shubin M. A., “Teoremy o sovpadenii spektrov psevdodifferentsialnogo pochti-periodicheskogo operatora v prostranstvakh $L^2(\mathbf{R}^n)$ i $B^2(\mathbf{R}^n)$”, Sib. matem. zh., XVII:1 (1976), 200–215

[17] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl