On the method of spherical harmonics for subharmonic functions
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 133-148

Voir la notice de l'article provenant de la source Math-Net.Ru

A new criterion for completely regular growth of a subharmonic function in $\mathbf R^m$, $m\geqslant3$, is established in terms of spherical harmonics, and a sharp upper bound for the deficiency of such a function is found. From the expansion of a subharmonic function on the unit sphere $S^m$ in a Fourier–Laplace series the author shows that the function belongs to the space $L^2(S^m)$ for $m=3,4$. Bibliography: 23 titles.
@article{SM_1983_44_2_a0,
     author = {A. A. Kondratyuk},
     title = {On the method of spherical harmonics for subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/}
}
TY  - JOUR
AU  - A. A. Kondratyuk
TI  - On the method of spherical harmonics for subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 133
EP  - 148
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/
LA  - en
ID  - SM_1983_44_2_a0
ER  - 
%0 Journal Article
%A A. A. Kondratyuk
%T On the method of spherical harmonics for subharmonic functions
%J Sbornik. Mathematics
%D 1983
%P 133-148
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/
%G en
%F SM_1983_44_2_a0
A. A. Kondratyuk. On the method of spherical harmonics for subharmonic functions. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 133-148. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/