On the method of spherical harmonics for subharmonic functions
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 133-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new criterion for completely regular growth of a subharmonic function in $\mathbf R^m$, $m\geqslant3$, is established in terms of spherical harmonics, and a sharp upper bound for the deficiency of such a function is found. From the expansion of a subharmonic function on the unit sphere $S^m$ in a Fourier–Laplace series the author shows that the function belongs to the space $L^2(S^m)$ for $m=3,4$. Bibliography: 23 titles.
@article{SM_1983_44_2_a0,
     author = {A. A. Kondratyuk},
     title = {On the method of spherical harmonics for subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {133--148},
     year = {1983},
     volume = {44},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/}
}
TY  - JOUR
AU  - A. A. Kondratyuk
TI  - On the method of spherical harmonics for subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 133
EP  - 148
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/
LA  - en
ID  - SM_1983_44_2_a0
ER  - 
%0 Journal Article
%A A. A. Kondratyuk
%T On the method of spherical harmonics for subharmonic functions
%J Sbornik. Mathematics
%D 1983
%P 133-148
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/
%G en
%F SM_1983_44_2_a0
A. A. Kondratyuk. On the method of spherical harmonics for subharmonic functions. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 133-148. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/

[1] Rubel L. A., Taylor B. A., “A Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl

[2] Noverraz P., “Extension d'une méthode de series de Fourier aux fonctions sousharmoniques et plurisousharmoniques”, Seminaire P. belong, 6-ème anné, 1965-1966, Expose No 3

[3] Rubel L. A., “A survey of a Fourier series method for meromorphic functions”, Lecture Notes in Math., 336, Springer-Verlag, 1973, 51–62 | MR

[4] Azarin V. S., “O subgarmonicheskikh funktsiyakh vpolne regulyarnogo rosta v mnogomernom prostranstve”, DAN SSSR, 146:4 (1962), 743–746 | MR | Zbl

[5] Kondratyuk A. A., “Metod ryadov Fure dlya tselykh i meromorfnykh funktsii vpolne regulyarnogo rosta”, Matem. sb., 106(148) (1978), 386–408 | MR | Zbl

[6] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[7] Zhizhiashvili L. V., Topuriya S. B., “Ryady Fure–Laplasa na sfere. Matematicheskii analiz”, Itogi nauki i tekhniki, 15, VINITI, M., 1977, 83–130

[8] Carathéodory C., Über die Fouriersche Koeffizienten monotoner Funktionen, Preuss. Akad. Wiss., Sitzungsber, 1920

[9] Lévy P., “L'éspace de répartitions linéaires”, Bull. Sci. Math., II. Ser., 62 (1938), 305–320, 324–337 | Zbl

[10] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[11] Privalov I. I., Subgarmonicheskie funktsii, ONTI, M., 1937

[12] Hayman W. K., Kennedy P. P., Subharmonic functions, V. I, Academic Press, New York, 1976 | MR

[13] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[14] Shvarts L., Analiz, T. 1, Mir, M., 1972

[15] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[16] Azarin V. S., O roste subgarmonicheskikh i tselykh funktsii konechnogo poryadka, Dis. na soiskanie uch. st. dokt. fiz.-matem. nauk, 1974

[17] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[18] Brelot M., “Etude de fonctions sousharmoniques au voisinage d'un point singulier”, Ann. Inst. Fourier, 1 (1950), 121–155 | MR

[19] Azarin V. S., “Ob indikatore funktsii, subgarmonicheskoi v mnogomernom prostranstve”, Matem. sb., 58(100), 87–94 | MR | Zbl

[20] Calderón A. P., Zygmund A., “On a problem of Mihlin”, Trans. Amer. Math. Soc., 78 (1955), 209–224 | DOI | MR | Zbl

[21] Berens H., Butzer P. L., Pawelke S., “Limitirungsverfahren von Reihen mehrdimensionalen Kugelfunktionen und deren Saturationsverhalten”, Pubis. Res. Inst. Math. Sci., A4:2 (1968), 201–268 | DOI | MR

[22] Rao N. V., Shea Daniel F., “Growth problems for subharmonic functions of finite order in space”, Trans. Amer. Math. Soc., 230 (1977), 347–370 | DOI | MR | Zbl

[23] Krattser A., Frants V., Transtsendentnye funktsii, IL, M., 1963