On the method of spherical harmonics for subharmonic functions
Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 133-148
Voir la notice de l'article provenant de la source Math-Net.Ru
A new criterion for completely regular growth of a subharmonic function in $\mathbf R^m$, $m\geqslant3$, is established in terms of spherical harmonics, and a sharp upper bound for the deficiency of such a function is found.
From the expansion of a subharmonic function on the unit sphere $S^m$ in a Fourier–Laplace series the author shows that the function belongs to the space $L^2(S^m)$ for $m=3,4$.
Bibliography: 23 titles.
@article{SM_1983_44_2_a0,
author = {A. A. Kondratyuk},
title = {On the method of spherical harmonics for subharmonic functions},
journal = {Sbornik. Mathematics},
pages = {133--148},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/}
}
A. A. Kondratyuk. On the method of spherical harmonics for subharmonic functions. Sbornik. Mathematics, Tome 44 (1983) no. 2, pp. 133-148. http://geodesic.mathdoc.fr/item/SM_1983_44_2_a0/