Algebras of homological dimension~1
Sbornik. Mathematics, Tome 44 (1983) no. 1, pp. 97-107

Voir la notice de l'article provenant de la source Math-Net.Ru

Augmented algebras over a field of homological dimension 1 ($\operatorname{hd}R=1$) are studied. It is proved that if $\operatorname{hd}R=1$, then the associated graded algebra $E(R)$ is free. If the filtration of the algebra $R$ defined by the powers of the augmentation ideal is separated, then the following conditions are equivalent: 1) $\operatorname{hd}R=1$, 2) $E(R)$ is free, 3) $\operatorname{w.g.dim}R=1$. Some properties of groups of homological dimension 1 are presented. It is proved that, in the category of graded algebras, the functor that produces homology groups carries a direct sum into a free product and a free product into a direct sum. Bibliography: 6 titles.
@article{SM_1983_44_1_a4,
     author = {V. E. Govorov},
     title = {Algebras of homological dimension~1},
     journal = {Sbornik. Mathematics},
     pages = {97--107},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_1_a4/}
}
TY  - JOUR
AU  - V. E. Govorov
TI  - Algebras of homological dimension~1
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 97
EP  - 107
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_1_a4/
LA  - en
ID  - SM_1983_44_1_a4
ER  - 
%0 Journal Article
%A V. E. Govorov
%T Algebras of homological dimension~1
%J Sbornik. Mathematics
%D 1983
%P 97-107
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1983_44_1_a4/
%G en
%F SM_1983_44_1_a4
V. E. Govorov. Algebras of homological dimension~1. Sbornik. Mathematics, Tome 44 (1983) no. 1, pp. 97-107. http://geodesic.mathdoc.fr/item/SM_1983_44_1_a4/