On a method of solving equations with simple characteristics
Sbornik. Mathematics, Tome 44 (1983) no. 1, pp. 23-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the construction of $k$-differential equations for large values of the parameter $k$. The authors develop a method permitting one to construct solutions of such equations in the space $\mathbf R^n$, with limiting absorption conditions. Together with the ideas of Legendre uniformization, the method allows one to construct solutions of boundary value problems for equations of the type under consideration. Bibliography: 30 titles.
@article{SM_1983_44_1_a1,
     author = {B. Yu. Sternin and V. E. Shatalov},
     title = {On a~method of solving equations with simple characteristics},
     journal = {Sbornik. Mathematics},
     pages = {23--59},
     year = {1983},
     volume = {44},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_1_a1/}
}
TY  - JOUR
AU  - B. Yu. Sternin
AU  - V. E. Shatalov
TI  - On a method of solving equations with simple characteristics
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 23
EP  - 59
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_1_a1/
LA  - en
ID  - SM_1983_44_1_a1
ER  - 
%0 Journal Article
%A B. Yu. Sternin
%A V. E. Shatalov
%T On a method of solving equations with simple characteristics
%J Sbornik. Mathematics
%D 1983
%P 23-59
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1983_44_1_a1/
%G en
%F SM_1983_44_1_a1
B. Yu. Sternin; V. E. Shatalov. On a method of solving equations with simple characteristics. Sbornik. Mathematics, Tome 44 (1983) no. 1, pp. 23-59. http://geodesic.mathdoc.fr/item/SM_1983_44_1_a1/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[2] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh funktsii, Nauka, M., 1962 | Zbl

[3] Borovikov V. L., Kinber B. E., “Geometricheskaya teoriya difraktsii”, Asimptoticheskie metody v teorii difraktsii i rasprostraneniya voln, M., 1970, 156–167

[4] Buslaev V. S., “Ob asimptoticheskom povedenii spektralnykh kharakteristik vneshnikh zadach dlya operatora Shredingera”, Izv. AN SSSR, ser. matem., 39 (1975), 149–235 | MR | Zbl

[5] Vainberg B. R., “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t \to \infty$ reshenii nestatsionarnykh zadach”, UMN, 30:2 (1975), 3–55 | MR | Zbl

[6] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1975

[7] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[8] Egorov Yu. V., “Kanonicheskie preobrazovaniya i psevdodifferentsialnye operatory”, Trudy Mosk. matem. ob-va, 1971, no. 24, 3–28 | MR | Zbl

[9] Kravtsov Yu. A., “Priblizheniya geometricheskoi optiki dlya neodnorodnykh sred i primykayuschie k nemu asimptoticheskie metody”, Asimptoticheskie metody v teorii difraktsii i rasprostraneniya voln, M., 1970, 257–362

[10] Kucherenko V. V., “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR

[11] Kucherenko V. V., “Nekotorye svoistva korotkovolnovoi asimptotiki fundamentalnogo resheniya uravneniya $[\Delta+k^2 h^2(x)u]=0$”, Trudy MIEM, 1972, no. 25, 32–55

[12] Kucherenko V. V., “Asimptoticheskoe reshenie kraevoi zadachi”, UMN, 33:3 (1978), 138–139

[13] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[14] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1973 | MR

[15] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[16] Mischenko A. S, Sternin B. Yu., Shatalov V. E., Kanonicheskii operator Maslova. Kompleksnaya teoriya, MIEM, M., 1974

[17] Mischenko A. S, Sternin B. Yu., Shatalov V. E., Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[18] Sternin B. Yu., Shatalov V. E., O rasprostranenii elektromagnitnykh voln v korotkovolnovom diapazone, No 3333-78. Dep., VINITI, M

[19] Sternin B. Yu., Shatalov V. E., “Ob odnom metode rascheta difraktsii na vypuklom tele”, DAN SSSR, 250:2 (1980), 347–349 | MR

[20] Sternin B. Yu., Shatalov V. E., “Ob odnom metode rascheta difraktsii na vypuklom tele”, Differentsialnye uravneniya s chastnymi proizvodnymi, Nauka, Novosibirsk, 1980, 191–193 | MR

[21] Sternin B. Yu., Shatalov V. E., “Lezhandrova uniformizatsiya mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 113 (155) (1980), 263–284 | MR | Zbl

[22] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[23] Fedoryuk M. V., “Osobennosti yader integralnykh operatorov Fure i asimptotika reshenii smeshannoi zadachi”, UMN, 32:6 (1977), 67–115 | MR | Zbl

[24] Fedoryuk M. V., “Asimptotika reshenii kraevykh zadach so skolzyaschimi luchami”, UMN, 33:3 (1978), 137

[25] Khermander L., “Integralnye operatory Fure. 1”, Matematika, 16:1 (1972), 17–61 ; 2, 67–136 | Zbl

[26] Bremer H., Terrestrial radiowaves, Elsewir Press, 1949

[27] Duistermaat I. L, Hormander L., “Fourier integral operators. II”, Acta Math., 128:3–4 (1972), 183–269 | DOI | MR | Zbl

[28] Ludwig D., “Uniform asymptotic expansions of the field, scattered by a convex object at high frequencies”, Comm. Pure Appl. Math., 20:1 (1967), 103–138 | DOI | MR | Zbl

[29] Melin A., Sjostrand I., “Fourier integral operators with complex phase functions and applications to an interior boundary problem”, Comm. in PDE, 1976, no. 1 (4), 313–400 | DOI | MR | Zbl

[30] Melrose R. B., Uhlman G. A., “Lagrangian Intersections and the Cauchy Problem”, Comm. Pure Appl. Math., 32 (1979), 483–519 | DOI | MR | Zbl