On estimates of the fundamental solution of an elliptic equation with a small parameter
Sbornik. Mathematics, Tome 44 (1983) no. 1, pp. 1-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior of a fundamental solution $\Gamma(x,y;\varepsilon)$ of the elliptic equation $$ P\biggl(x,-i\varepsilon\,\frac\partial{\partial x}\biggr)u=0 $$ is studied for small $\varepsilon>0$ and fixed $x,y\in\mathbf R^n$. The main result is $$ \varlimsup_{\varepsilon\to+0}\varepsilon\ln|\Gamma(x,y;\varepsilon)|\leqslant-\rho_P(x,y), $$ where $\rho_P(x,y)$ is the distance between the points $x$ and $y$ in a Finsler metric connected with the function $P(x,\xi)$. Bibliography: 1 title.
@article{SM_1983_44_1_a0,
     author = {M. A. Evgrafov},
     title = {On estimates of the fundamental solution of an elliptic equation with a~small parameter},
     journal = {Sbornik. Mathematics},
     pages = {1--22},
     year = {1983},
     volume = {44},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1983_44_1_a0/}
}
TY  - JOUR
AU  - M. A. Evgrafov
TI  - On estimates of the fundamental solution of an elliptic equation with a small parameter
JO  - Sbornik. Mathematics
PY  - 1983
SP  - 1
EP  - 22
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1983_44_1_a0/
LA  - en
ID  - SM_1983_44_1_a0
ER  - 
%0 Journal Article
%A M. A. Evgrafov
%T On estimates of the fundamental solution of an elliptic equation with a small parameter
%J Sbornik. Mathematics
%D 1983
%P 1-22
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1983_44_1_a0/
%G en
%F SM_1983_44_1_a0
M. A. Evgrafov. On estimates of the fundamental solution of an elliptic equation with a small parameter. Sbornik. Mathematics, Tome 44 (1983) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/SM_1983_44_1_a0/

[1] Evgrafov M. A., “Otsenki fundamentalnogo resheniya parabolicheskogo uravneniya”, Matem. sb., 112 (154) (1980), 331–353 | MR | Zbl