On the functional dimension of the solution space of hypoelliptic equations
Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 547-562 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $P(D)$ be a linear differential operator with constant coefficients, and let $N=\{u;\ u\in C(E_n),\ P(D)u=0\}$. Exact formulas are established for the functional dimensional $\operatorname{df}N$ of $N$ when $P(D)$ is a) semielliptic or b) hypoelliptic, where if $P(D)$ is represented in the form $$ P(D)=\sum_{(\lambda,\alpha)=d_0}\gamma_\alpha D^\alpha+\sum_{(\lambda,\alpha)\leqslant d_1}\gamma_\alpha D^\alpha\equiv P_0(D)+P_1(D), $$ with $d_1, $\lambda\in R_n$ and $\lambda_1\geqslant\lambda_2\geqslant\dots\geqslant\lambda_n=1$, then $P_0(0,\dots,0,\xi_j,0,\dots,0)\ne0$ for $\xi_j\ne0$ ($j=1,\dots,n$). It is proved that $\operatorname{df}N=|\lambda|$ in case a), while in case b) $\displaystyle\operatorname{df}N=\frac1\Delta\biggl(\sum^{n-1}_{j=1}\lambda_j\biggr)+1$ under certain restrictions on $P(D)$, where $$ \Delta=\inf(d_1-d_0+l(\tau))/l(\tau),\qquad\tau\in\Sigma(P_0), $$ with $\Sigma(P_0)=\{\xi\in R_n,\,|\xi|=1,\,P_0(\xi)=0\}$ and $l(\tau)$ the order of the zero $\tau\in\Sigma(P_0)$ of the polynomial $P_0(\xi)$. Bibliography: 19 titles.
@article{SM_1982_43_4_a6,
     author = {V. N. Margaryan and G. G. Kazaryan},
     title = {On the functional dimension of the solution space of hypoelliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {547--562},
     year = {1982},
     volume = {43},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a6/}
}
TY  - JOUR
AU  - V. N. Margaryan
AU  - G. G. Kazaryan
TI  - On the functional dimension of the solution space of hypoelliptic equations
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 547
EP  - 562
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_4_a6/
LA  - en
ID  - SM_1982_43_4_a6
ER  - 
%0 Journal Article
%A V. N. Margaryan
%A G. G. Kazaryan
%T On the functional dimension of the solution space of hypoelliptic equations
%J Sbornik. Mathematics
%D 1982
%P 547-562
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1982_43_4_a6/
%G en
%F SM_1982_43_4_a6
V. N. Margaryan; G. G. Kazaryan. On the functional dimension of the solution space of hypoelliptic equations. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 547-562. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a6/

[1] Pontrjagin L., Schnirelman L., “Sur une propriété métrique de la dimension”, Ann. Math., 33 (1921), 156–162 | DOI | MR

[2] Gurevich V., Volmen G., Teoriya razmernosti, IL, M., 1948

[3] Kolmogorov A. N., “Otsenki minimalnogo chisla elementov $\varepsilon$-setei v razlichnykh funktsionalnykh prostranstvakh”, UMN, X:1 (1955), 192–193

[4] Vitushkin A. G., “K trinadtsatoi probleme Gilberta”, DAN SSSR, 95:4 (1955), 701–704

[5] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, XIV:2 (96) (1959), 3–86 | MR

[6] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, vyp. 4, M., 1961

[7] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[8] Tanaka S., “The $\varepsilon$-entropy of some class of harmonic functions”, Proc. Japan Acad., 39:2 (1963), 85–88 | DOI | MR | Zbl

[9] Kömura Y., “Die Nüklearität der Lösungsräume der Hypoelliptischen Gleichungen”, Funcialaj Ekvacioj, 9 (1966), 313–324 | MR

[10] Kolmogorov L. N., “O lineinoi razmernosti topologicheskikh vektornykh prostranstv”, DAN SSSR, 120:2 (1958), 239–242 | MR

[11] Zielezny Z., “On the Functional dimension of the space of solutions of Partial differential equations”, J. Diff. Equal, 18:2, 1975 (1975), 340–345 | DOI | MR | Zbl

[12] Malgrange B., “Exictence et approximation des solutions des equations aux derivees partialles et equations de convolation”, Ann. Foure, VI (1955–56), 271–355 | MR

[13] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[14] Cattabriga L., “Uno spazio funzionale conesso ad una classe di operatori ipoellitici” (Symposia Math.), Inst. Naz. di Alta Mat., VII, Bologna, 1971, 547–558 | MR

[15] Mikhailov V. P., “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Trudy Matem. in-ta AN SSSR im. V. A. Steklova, 91 (1967), 59–80

[16] Kazaryan G. G., “O nulyakh mnogochlenov mnogikh peremennykh”, Diff. uravneniya, X:1 (1974), 712–720

[17] Kazaryan G. G., Margaryan V. N., “Kriterii gipoelliptichnosti v terminakh moschnosti ikh sily operatorov”, Trudy Matem. in-ta AN SSSR im. V. A. Steklova, 150 (1979), 128–142 | MR | Zbl

[18] Kazaryan G. G., “Ob odnom semeistve gipoellipticheskikh polinomov”, Izv. AN ArmSSR, IX:3 (1974), 189–211

[19] Kazaryan G. G., “O dobavlenii mladshikh chlenov k differentsialnym polinomam”, Izv. AN ArmSSR, IX:6 (1974), 473–485 | MR