On the functional dimension of the solution space of hypoelliptic equations
Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 547-562
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P(D)$ be a linear differential operator with constant coefficients, and let $N=\{u;\ u\in C(E_n),\ P(D)u=0\}$. Exact formulas are established for the functional dimensional $\operatorname{df}N$ of $N$ when $P(D)$ is a) semielliptic or b) hypoelliptic, where if $P(D)$ is represented in the form
$$
P(D)=\sum_{(\lambda,\alpha)=d_0}\gamma_\alpha D^\alpha+\sum_{(\lambda,\alpha)\leqslant d_1}\gamma_\alpha D^\alpha\equiv P_0(D)+P_1(D),
$$
with $d_1$, $\lambda\in R_n$ and $\lambda_1\geqslant\lambda_2\geqslant\dots\geqslant\lambda_n=1$, then $P_0(0,\dots,0,\xi_j,0,\dots,0)\ne0$ for $\xi_j\ne0$ ($j=1,\dots,n$).
It is proved that $\operatorname{df}N=|\lambda|$ in case a), while in case b) $\displaystyle\operatorname{df}N=\frac1\Delta\biggl(\sum^{n-1}_{j=1}\lambda_j\biggr)+1$ under certain restrictions on $P(D)$, where
$$
\Delta=\inf(d_1-d_0+l(\tau))/l(\tau),\qquad\tau\in\Sigma(P_0),
$$
with $\Sigma(P_0)=\{\xi\in R_n,\,|\xi|=1,\,P_0(\xi)=0\}$ and $l(\tau)$ the order of the zero $\tau\in\Sigma(P_0)$ of the polynomial $P_0(\xi)$.
Bibliography: 19 titles.
@article{SM_1982_43_4_a6,
author = {V. N. Margaryan and G. G. Kazaryan},
title = {On the functional dimension of the solution space of hypoelliptic equations},
journal = {Sbornik. Mathematics},
pages = {547--562},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a6/}
}
TY - JOUR AU - V. N. Margaryan AU - G. G. Kazaryan TI - On the functional dimension of the solution space of hypoelliptic equations JO - Sbornik. Mathematics PY - 1982 SP - 547 EP - 562 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1982_43_4_a6/ LA - en ID - SM_1982_43_4_a6 ER -
V. N. Margaryan; G. G. Kazaryan. On the functional dimension of the solution space of hypoelliptic equations. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 547-562. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a6/