Coconvex approximation of functions of several variables by polynomials
Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 515-526
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $M\subseteq\mathbf R^m$ be a compact convex body, and $O$ the center of gravity of $M$. For a convex function $f\colon M\to\mathbf R$ let $$ \omega(f,\delta,M)=\sup_{\substack{x,y\in M\\|x-y|_M\leqslant\delta}}|f(x)-f(y)|\qquad(\delta\geqslant0), $$ where $|x|_M=\min\{\mu\geqslant0:x\in\mu(M-O)\}$, and let $M_1\subseteq\mathbf R^m$ be a convex body, $M\subseteq M_1$, and $\varkappa=\min\{\mu\geqslant1:M_1\subseteq\mu M\}$, $\mu M$ being a homothety of $M$ with respect to $O$. Then for $n\geqslant0$ there exists an algebraic polynomial $$ p_n(x)=\sum_{i_1+\dots+i_m\leqslant n}a_{i_1,\dots,i_m}x^{i_1}_1\cdots x^{i_m}_m $$ that is convex on $M_1$ and such that $$ \|f-p_n\|_{C(M)}\leqslant\varkappa A_m\omega\biggl(f,\frac1{n+1},M\biggr). $$ Bibliography: 6 titles.
@article{SM_1982_43_4_a4,
author = {A. S. Shvedov},
title = {Coconvex approximation of functions of several variables by polynomials},
journal = {Sbornik. Mathematics},
pages = {515--526},
year = {1982},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a4/}
}
A. S. Shvedov. Coconvex approximation of functions of several variables by polynomials. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 515-526. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a4/
[1] Beatson R. K., “The degree of monotone approximation”, Pacific J. Math., 74:1 (1978), 5–14 | MR | Zbl
[2] Shvedov A. S., “Teorema Dzheksona v $L^p$, $0
1$, dlya algebraicheskikh mnogochlenov i poryadki komonotonnykh priblizhenii”, Matem. zametki, 25:1 (1979), 107–117 | MR | Zbl[3] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[4] Gryunbaum B., Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR | Zbl
[5] Grilnbaum B., “Partitions of mass-distributions and of convex bodies by hyperplans”, Pacific J. Math., 10:4 (1960), 1257–1261 | MR
[6] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl