On approximation properties of certain incomplete systems
Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 443-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{\varphi_n(x)\}$ be a system of almost-everywhere finite measurable functions on $[0,1]$ that has one of the following properties: I. $\{\varphi_n(x)\}^\infty_{n=1}$ is a system for representing the functions in $L_p[0,1]$, $0, by convergent series. II. $\{\varphi_n(x)\}^\infty_{n=1}$ is a system for representing the functions in $L_p[0,1]$, $0, by almost-everywhere convergent series. III. $\{\varphi_n(x)\}^\infty_{n=1}$ has the strong Luzing $C$-property. IV. $\{\varphi_n(x)\}^\infty_{n=1}$ can be multiplicatively completed to form a system for representing the functions in $L_p[0,1]$, $p\geqslant1$, by series that converge in the $L_p[0,1]$-metric. It is shown that if $\{\varphi_n(x)\}^\infty_{n=1}$ is a system having one of the properties I–IV, then any subsystem of it with the form $\{\varphi_k(x)\}^\infty_{k=N+1}$ ($N$ any natural number) also has this property. Bibliography: 9 titles.
@article{SM_1982_43_4_a0,
     author = {A. A. Talalyan},
     title = {On~approximation properties of certain incomplete systems},
     journal = {Sbornik. Mathematics},
     pages = {443--471},
     year = {1982},
     volume = {43},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/}
}
TY  - JOUR
AU  - A. A. Talalyan
TI  - On approximation properties of certain incomplete systems
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 443
EP  - 471
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/
LA  - en
ID  - SM_1982_43_4_a0
ER  - 
%0 Journal Article
%A A. A. Talalyan
%T On approximation properties of certain incomplete systems
%J Sbornik. Mathematics
%D 1982
%P 443-471
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/
%G en
%F SM_1982_43_4_a0
A. A. Talalyan. On approximation properties of certain incomplete systems. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 443-471. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/

[1] Talalyan A. A., “Predstavlenie funktsii klassov $L_p[0,1]$, $0

1$, ortogonalnymi ryadami”, Acta math. Acad, Sci. hung., 21:1–2 (1970), 1–9 | DOI | Zbl

[2] Menshov D. E., “Sur les series de Fourier des fonctions continues”, Matem. sb., 8 (50) (1940), 493–518 | MR

[3] Arutyunyan F. G., “Predstavlenie funktsii kratnymi ryadami”, DAN Arm. SSR, XIV:2 (1977), 72–75

[4] Braun Ben-Ami., “On the multiplicative completion of certain basic sequences $L^p$, $1

+\infty$”, Trans. Amer. Math. Soc., 176 (1973), 499–508 | DOI | MR | Zbl

[5] Kashin B. S., “Ob ortogonalnykh sistemakh skhodimosti”, DAN SSSR, 228:2 (1976), 285–286 | MR | Zbl

[6] Talalyan A. A., “O sistemakh, ryady po kotorym predstavlyayut lyubye izmerimye funktsii”, Matem. sb., 76 (118) (1968), 39–51

[7] Talalyan A. A., “O suschestvovanii nul-ryadov po nekotorym sistemam funktsii”, Matem. zametki, 5:1 (1969), 3–12

[8] Talalyan A. A., “O sistemakh funktsii, ryady po kotorym predstavlyayut v metrike $L_p[0,1]$ funktsii prostranstva $L_q[0,1]$, $1 \leqslant p \leqslant q$”, Izv. AN Arm. SSR, 3:4–5 (1968), 327–357

[9] Talalyan A. A., “Predstavlenie izmerimykh funktsii ryadami”, UMN, XV:5 (1960), 77–141 | MR