, by convergent series. II. $\{\varphi_n(x)\}^\infty_{n=1}$ is a system for representing the functions in $L_p[0,1]$, $0 , by almost-everywhere convergent series. III. $\{\varphi_n(x)\}^\infty_{n=1}$ has the strong Luzing $C$-property. IV. $\{\varphi_n(x)\}^\infty_{n=1}$ can be multiplicatively completed to form a system for representing the functions in $L_p[0,1]$, $p\geqslant1$, by series that converge in the $L_p[0,1]$-metric. It is shown that if $\{\varphi_n(x)\}^\infty_{n=1}$ is a system having one of the properties I–IV, then any subsystem of it with the form $\{\varphi_k(x)\}^\infty_{k=N+1}$ ($N$ any natural number) also has this property. Bibliography: 9 titles.
@article{SM_1982_43_4_a0,
author = {A. A. Talalyan},
title = {On~approximation properties of certain incomplete systems},
journal = {Sbornik. Mathematics},
pages = {443--471},
year = {1982},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/}
}
A. A. Talalyan. On approximation properties of certain incomplete systems. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 443-471. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/
[1] Talalyan A. A., “Predstavlenie funktsii klassov $L_p[0,1]$, $0
1$, ortogonalnymi ryadami”, Acta math. Acad, Sci. hung., 21:1–2 (1970), 1–9 | DOI | Zbl[2] Menshov D. E., “Sur les series de Fourier des fonctions continues”, Matem. sb., 8 (50) (1940), 493–518 | MR
[3] Arutyunyan F. G., “Predstavlenie funktsii kratnymi ryadami”, DAN Arm. SSR, XIV:2 (1977), 72–75
[4] Braun Ben-Ami., “On the multiplicative completion of certain basic sequences $L^p$, $1
+\infty$”, Trans. Amer. Math. Soc., 176 (1973), 499–508 | DOI | MR | Zbl[5] Kashin B. S., “Ob ortogonalnykh sistemakh skhodimosti”, DAN SSSR, 228:2 (1976), 285–286 | MR | Zbl
[6] Talalyan A. A., “O sistemakh, ryady po kotorym predstavlyayut lyubye izmerimye funktsii”, Matem. sb., 76 (118) (1968), 39–51
[7] Talalyan A. A., “O suschestvovanii nul-ryadov po nekotorym sistemam funktsii”, Matem. zametki, 5:1 (1969), 3–12
[8] Talalyan A. A., “O sistemakh funktsii, ryady po kotorym predstavlyayut v metrike $L_p[0,1]$ funktsii prostranstva $L_q[0,1]$, $1 \leqslant p \leqslant q$”, Izv. AN Arm. SSR, 3:4–5 (1968), 327–357
[9] Talalyan A. A., “Predstavlenie izmerimykh funktsii ryadami”, UMN, XV:5 (1960), 77–141 | MR