On~approximation properties of certain incomplete systems
Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 443-471

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\varphi_n(x)\}$ be a system of almost-everywhere finite measurable functions on $[0,1]$ that has one of the following properties: I. $\{\varphi_n(x)\}^\infty_{n=1}$ is a system for representing the functions in $L_p[0,1]$, $0$, by convergent series. II. $\{\varphi_n(x)\}^\infty_{n=1}$ is a system for representing the functions in $L_p[0,1]$, $0$, by almost-everywhere convergent series. III. $\{\varphi_n(x)\}^\infty_{n=1}$ has the strong Luzing $C$-property. IV. $\{\varphi_n(x)\}^\infty_{n=1}$ can be multiplicatively completed to form a system for representing the functions in $L_p[0,1]$, $p\geqslant1$, by series that converge in the $L_p[0,1]$-metric. It is shown that if $\{\varphi_n(x)\}^\infty_{n=1}$ is a system having one of the properties I–IV, then any subsystem of it with the form $\{\varphi_k(x)\}^\infty_{k=N+1}$ ($N$ any natural number) also has this property. Bibliography: 9 titles.
@article{SM_1982_43_4_a0,
     author = {A. A. Talalyan},
     title = {On~approximation properties of certain incomplete systems},
     journal = {Sbornik. Mathematics},
     pages = {443--471},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1982},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/}
}
TY  - JOUR
AU  - A. A. Talalyan
TI  - On~approximation properties of certain incomplete systems
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 443
EP  - 471
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/
LA  - en
ID  - SM_1982_43_4_a0
ER  - 
%0 Journal Article
%A A. A. Talalyan
%T On~approximation properties of certain incomplete systems
%J Sbornik. Mathematics
%D 1982
%P 443-471
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/
%G en
%F SM_1982_43_4_a0
A. A. Talalyan. On~approximation properties of certain incomplete systems. Sbornik. Mathematics, Tome 43 (1982) no. 4, pp. 443-471. http://geodesic.mathdoc.fr/item/SM_1982_43_4_a0/