A scattering problem in laminar media
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 427-441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The scattering problem in a laminar medium $$ \Delta u(x)+k^2q(x_1,\dots,x_n,x_1/\varepsilon)u(x)=0 $$ with a radiation condition at infinity is considered. The potential $q(x,y)$ is periodic in the variable $y$. Here $k$ is a large parameter, and $\varepsilon$ is a small parameter with $k\sim\varepsilon^{-\alpha}$, $\alpha>1$. In this paper a formal asymptotic expansion of the solution of this problem is found. To construct it an operator analogous to the canonical Maslov operator is used which acts on a certain Lagrangian manifold not depending on $\varepsilon$. An analogous problem for the Schrödinger equation in a laminar medium is solved. Bibliography: 10 titles.
@article{SM_1982_43_3_a9,
     author = {A. L. Piatnitski},
     title = {A~scattering problem in laminar media},
     journal = {Sbornik. Mathematics},
     pages = {427--441},
     year = {1982},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a9/}
}
TY  - JOUR
AU  - A. L. Piatnitski
TI  - A scattering problem in laminar media
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 427
EP  - 441
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a9/
LA  - en
ID  - SM_1982_43_3_a9
ER  - 
%0 Journal Article
%A A. L. Piatnitski
%T A scattering problem in laminar media
%J Sbornik. Mathematics
%D 1982
%P 427-441
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a9/
%G en
%F SM_1982_43_3_a9
A. L. Piatnitski. A scattering problem in laminar media. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 427-441. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a9/

[1] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[2] Vainberg B. R., “Kvaziklassicheskoe priblizhenie v statsionarnykh zadachakh rasseyaniya”, Funkts. analiz, 11:4 (1977), 6–18 | MR | Zbl

[3] Vainberg B. R., “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t \to \infty$ reshenii nestatsionarnykh zadach”, UMN, XXX:2 (1975), 3–55 | MR

[4] Vainberg B. R., “O statsionarnykh zadachakh teorii rasseyaniya i povedenii pri bolshikh znacheniyakh vremeni reshenii nestatsionarnykh zadach”, Trudy Vsesoyuznoi konferentsii po uravneniyam s chastnymi proizvodnymi, MGU, M., 1976

[5] Brekhovskikh L. M., Volny v sloistykh sredakh, AN SSSR, M., 1957 | MR

[6] Mischenko A. S, Sternin B. Yu., Shatalov V. E., Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[7] Kurosh A. G., Kurs vysshei algebry, Gostekhizdat, M., 1946

[8] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[9] Kucherenko V. V., “Asimptoticheskie resheniya uravnenii s kompleksnymi kharakteristikami”, Matem. sb., 95(137) (1974), 163–213 | Zbl

[10] Bakhvalov N. S., “Osrednenie differentsialnykh operatorov s chastnymi proizvodnymi s bystroostsilliruyuschimi koeffitsientami”, DAN SSSR, 221:3 (1975), 516–519 | MR | Zbl