A~scattering problem in laminar media
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 427-441
Voir la notice de l'article provenant de la source Math-Net.Ru
The scattering problem in a laminar medium
$$
\Delta u(x)+k^2q(x_1,\dots,x_n,x_1/\varepsilon)u(x)=0
$$
with a radiation condition at infinity is considered. The potential $q(x,y)$ is periodic in the variable $y$. Here $k$ is a large parameter, and $\varepsilon$ is a small parameter with $k\sim\varepsilon^{-\alpha}$, $\alpha>1$.
In this paper a formal asymptotic expansion of the solution of this problem is found. To construct it an operator analogous to the canonical Maslov operator is used which acts on a certain Lagrangian manifold not depending on $\varepsilon$. An analogous problem for the Schrödinger equation in a laminar medium is solved.
Bibliography: 10 titles.
@article{SM_1982_43_3_a9,
author = {A. L. Piatnitski},
title = {A~scattering problem in laminar media},
journal = {Sbornik. Mathematics},
pages = {427--441},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {1982},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a9/}
}
A. L. Piatnitski. A~scattering problem in laminar media. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 427-441. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a9/