Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 413-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multidimensional generalizations of the Tauberian theorems of Karamata are obtained, along with two applications of them to the investigation of Bellman–Harris branching processes. Bibliography: 10 titles.
@article{SM_1982_43_3_a8,
     author = {A. L. Yakymiv},
     title = {Multidimensional {Tauberian} theorems and their application to {Bellman{\textendash}Harris} branching processes},
     journal = {Sbornik. Mathematics},
     pages = {413--425},
     year = {1982},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a8/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 413
EP  - 425
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a8/
LA  - en
ID  - SM_1982_43_3_a8
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes
%J Sbornik. Mathematics
%D 1982
%P 413-425
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a8/
%G en
%F SM_1982_43_3_a8
A. L. Yakymiv. Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 413-425. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a8/

[1] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v kriticheskikh vetvyaschikhsya protsessakh Bellmana–Kharrisa s beskonechnoi dispersiei”, Teoriya veroyatn., XXI:4 (1976), 861–863 | MR

[2] Vladimirov V. S., “Mnogomernoe obobschenie tauberovoi teoremy Khardi i Littlvuda”, Izv. AN SSSR, ser. matem., 40 (1976), 1084–1101 | MR | Zbl

[3] Vladimirov V. S, Zavyalov B. I., “Tauberovy teoremy v kvantovoi teorii polya”, Itogi nauki i tekhniki: Sovremennye problemy matematiki, 15, VINITI, M., 1980, 95–130

[4] Drozhzhinov Yu. I., Zavyalov B. I., “Tauberovy teoremy dlya obobschennykh funktsii s nositelyami v konusakh”, Matem. sb., 108(150) (1979), 78–90 | MR | Zbl

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967

[6] Yakymiv A., “Redutsirovannye vetvyaschiesya protsessy”, Teoriya veroyatn., XXV:3 (1980), 593–596 | MR

[7] Yakymiv A., Dokriticheskie i nadkriticheskie redutsirovannye vetvyaschiesya protsessy, Rabota deponirovana v VINITI AN SSSR, No 2226-80 ot 5 iyunya 1980 g | Zbl

[8] Esty W. W., “Critical age-dependent branching processes”, Ann. Prob., 25:1 (1975), 49–60 | DOI | MR

[9] Fleishmann K., Siegmund-Shultze R., “The structure of reduced Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR

[10] Seneta E., Regularly varying functiones, Lecture Notes in Math., 508, 1976 | MR