On Hartogs compacts of holomorphy
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 403-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the question of characterizing Hartogs compacts of holomorphy in the space of two complex variables by finding connections with problems of approximating functions on compact sets by superharmonic (harmonic) functions. In particular, it gives a solution of the problem of uniformly approximating a function continuous on a compact set and superharmonic in the interior by functions superharmonic on the compact set. Bibliography: 10 titles.
@article{SM_1982_43_3_a7,
     author = {M. Shirinbekov},
     title = {On {Hartogs} compacts of holomorphy},
     journal = {Sbornik. Mathematics},
     pages = {403--411},
     year = {1982},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a7/}
}
TY  - JOUR
AU  - M. Shirinbekov
TI  - On Hartogs compacts of holomorphy
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 403
EP  - 411
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a7/
LA  - en
ID  - SM_1982_43_3_a7
ER  - 
%0 Journal Article
%A M. Shirinbekov
%T On Hartogs compacts of holomorphy
%J Sbornik. Mathematics
%D 1982
%P 403-411
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a7/
%G en
%F SM_1982_43_3_a7
M. Shirinbekov. On Hartogs compacts of holomorphy. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 403-411. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a7/

[1] Siciak I., “Separately analitic functions and envelopes of holomorphy of some lower dimensional subsets of $C^n$”, Ann. Pol. Math., 22:2 (1969), 45–170 | MR

[2] Zakharyuta V. Ya., “Separatno analiticheskie funktsii, obobscheniya teoremy Gartogsa i obolochki golomorfnosti”, Matem. sb., 101(143) (1976), 57–76 | Zbl

[3] Kazaryan M. V., “O separatno meromorfnykh funktsiyakh mnogikh kompleksnykh peremennykh”, Matem. sb., 99(141) (1976), 538–547 | Zbl

[4] Nekotorye voprosy teorii priblizhenii, IL, M., 1963

[5] Lewy H., “On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables”, Ann. Math., 64 (1956), 514–522 | DOI | MR | Zbl

[6] Wells R. O., “On the local holomorphic hull of a real submanifold in several complex variables”, Comm. Pure Appl. Math., 19 (1966), 145–165 | DOI | MR | Zbl

[7] Rossi H. E., “Differentiable manifold in complex euclidean space”, Trudy mezhd. kongressa matematikov, M., 1966

[8] Gonchar A. A., “O ravnomernom priblizhenii nepreryvnykh funktsii garmonicheskimi”, Izv. AN SSSR, ser. matem., 27 (1963), 1239–1250 | Zbl

[9] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[10] Brelo M., O topologiyakh i granitsakh v teorii potentsiala, Mir, M., 1974 | MR | Zbl