Characterizability of pairs of complex normed spaces
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 395-402
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the algebraic and topological structures of an arbitrary pair of complex normed spaces of dimension greater than 1 are determined by the topological ternary semigroup of continuous linear mappings in the class of complex normed spaces. It is established that the spaces under consideration are also reproduced by the topological ternary semigroup of one-dimensional continuous linear mappings. Bibliography: 5 titles.
@article{SM_1982_43_3_a6,
author = {R. B. Feizullaev},
title = {Characterizability of pairs of complex normed spaces},
journal = {Sbornik. Mathematics},
pages = {395--402},
year = {1982},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a6/}
}
R. B. Feizullaev. Characterizability of pairs of complex normed spaces. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 395-402. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a6/
[1] Gluskin L. M., “K teoreme Sushkevicha–Rissa. II”, Vestn. Khark. un-ta, ser. mekhan.-matem., 36:67 (1971), 14–36 | MR | Zbl
[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR
[3] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964
[4] Mustafaev L. G., Feizullaev R. B., “Polugrudy i polugruppy lineinykh nepreryvnykh otobrazhenii”, UMN, 34:6(210) (1979), 170–174 | MR | Zbl
[5] Mikhalev A. V., “Ob izomorfizme kolets nepreryvnykh endomorfizmov”, Sib. matem. zh., IV:1 (1963), 177–186 | MR