Simple groups with large Sylow subgroups
Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 377-393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A. I. Kostrikin posed the problem of the structure of a simple group having a Sylow $p$-subgroup $P$ for which $|P|^3>|G|$, and $C(x)\subset PC(P)$ whenever $x\in P^\sharp$. It has been established by the author that $PSL(2,q)$, and $Sz(q)$ are the only simple groups of this kind. Earlier Brauer and Reynolds have found the solution to the problem of Artin which is the partial case of Kostrikin's problem when $|P|=p$. One of the results used in the proof of the main theorem of the author leads to the following group-theoretical characterization of $PSL(2,q)$: a simple group $G$ is isomorphic to $PSL(2,q)$, $q>3$, if and only if $G$ contains a $CC$-subgroup of odd order $m$ distinct from its own normalizer in $G$, and such that $|G|<(m+1)^3$. Bibliography: 28 titles.
@article{SM_1982_43_3_a5,
     author = {A. V. Romanovskii},
     title = {Simple groups with large {Sylow} subgroups},
     journal = {Sbornik. Mathematics},
     pages = {377--393},
     year = {1982},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1982_43_3_a5/}
}
TY  - JOUR
AU  - A. V. Romanovskii
TI  - Simple groups with large Sylow subgroups
JO  - Sbornik. Mathematics
PY  - 1982
SP  - 377
EP  - 393
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1982_43_3_a5/
LA  - en
ID  - SM_1982_43_3_a5
ER  - 
%0 Journal Article
%A A. V. Romanovskii
%T Simple groups with large Sylow subgroups
%J Sbornik. Mathematics
%D 1982
%P 377-393
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1982_43_3_a5/
%G en
%F SM_1982_43_3_a5
A. V. Romanovskii. Simple groups with large Sylow subgroups. Sbornik. Mathematics, Tome 43 (1982) no. 3, pp. 377-393. http://geodesic.mathdoc.fr/item/SM_1982_43_3_a5/

[1] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR | Zbl

[2] Romanovskii A. V., “Konechnye gruppy s podgruppoi Frobeniusa”, Matem. sb., 108(150) (1979), 609–635 | MR | Zbl

[3] Romanovskii A. V., “O konechnykh gruppakh s frobeniusovoi sektsiei”, Trudy 6-go Vsesoyuznogo simp. po teorii grupp, Naukova dumka, Kiev, 1980 | MR

[4] Arad Z., “A classification of groups with a centralizer condition”, Bull. Austral. Math. Soc., 15:1 (1976), 31–85 | DOI | MR

[5] Brauer R., “Some applications of the theory of blocks of characters of finite groups. I”, J. Algebra, 1:2 (1964), 152–167 | DOI | MR | Zbl

[6] Brauer R., Leonard H. S., “On finite groups with an abelian Sylow groups”, Canad. J. Math., 14:3 (1962), 436–450 | MR | Zbl

[7] Brauer R., Reynolds W. F., “On a problem of F. Artin”, Ann. Math., 68:3 (1958), 713–720 | DOI | MR | Zbl

[8] Brauer R., Suzuki M., “On finite groups of even order whose 2-Sylow groups is a quaternion group”, Proc. Nat. Acad. Sci. USA, 45:12 (1959), 1757–1759 | DOI | MR | Zbl

[9] Dixon J. D., Puttaswamaiah B. M., Modular representations of finite groups, San Francisco, London, New York, 1977 | MR | Zbl

[10] Felt W., Characters of finite groups, New York, 1967

[11] Feit W., “On a class of doubly transitive permutation groups”, Illinois J. Math., 4:2 (1960), 170–186 | MR | Zbl

[12] Glauberman G., “Central elements in core-free groups”, J. Algebra, 4:3 (1966), 403–420 | DOI | MR | Zbl

[13] Glauberman G., “A characterization of the Suzuki groups”, Illinois J. Math., 12:1 (1968), 76–98 | MR | Zbl

[14] Gorenstein D., Finite groups, New York, 1968 | MR | Zbl

[15] Kholl M., Teoriya grupp, IL, M., 1962

[16] Harada K., “A characterization of the group $LF(2,q)$”, Illinois J. Math., II:4 (1967), 647–659 | MR

[17] Herzog M., “On finite groups containing a $CCT$-subgroup with a cyclic Sylow subgroup”, Pacif. J. Math., 25:3 (1968), 523–531 | MR | Zbl

[18] Herzog M., “On a problem of E. Artin”, J. Algebra, 15:3 (1970), 408–416 | DOI | MR | Zbl

[19] Huppert B., Endliche Gruppen, B. I., Springer-Verlag, Berlin, Heidelberg, New York, 1967 | MR | Zbl

[20] Isaacs I. M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[21] Leonard H. S., “Finite linear groups having an abelian Sylow subgroup. II”, J. Algebra, 26:2 (1973), 368–382 | DOI | MR | Zbl

[22] Sibley D. A., “Finite linear groups with a strongly self-centralizing Sylow subgroup. II”, J. Algebra, 36:2 (1975), 319–332 | DOI | MR | Zbl

[23] Sibley D. A., “Coherence in finite groups containing a Frobenius section”, Illinois J. Math., 20:3 (1976), 434–442 | MR | Zbl

[24] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[25] Suzuki M., “Two characteristic properties of $ZT$-groups”, Osaka Math. J., 15:1 (1963), 143–150 | MR | Zbl

[26] Suzuki M., “Finite groups of even order in which Sylow 2-groups are independent”, Ann. Math., 80:1 (1964), 58–77 | DOI | MR | Zbl

[27] Wielandt H., “Über die Existenz von Normalteiler in endlichen Gruppen”, Math. Nachr., 18 (1958), 274–280 | MR | Zbl

[28] Zassenhaus H., “Kennzeichnung endlicher linear Gruppen als Permutationsgruppen”, Abn. Math. Sem. Univ. Hamburg, 11 (1936), 17–40 | DOI